May 2009

Prepared for:
New Mexico State University
Facilities Planning & Construction

Funded by:
The Getty Foundation

Prepared by:
Van Citters Historic Preservation, LLC
Report Produced by

Van Citters: Historic Preservation, LLC
220 Adams Street SE, Suite A
Albuquerque, NM 87108
(505) 268-1324

and

Cherry/See/Reames Architects
220 Gold Avenue SW
Albuquerque, NM 87102
(505) 842-1278

Authors:
Karen Van Citters, CSI, CDT
Edith Cherry, FAIA, ASLA
William A. Dodge, Ph.D.
Timothy L. Sawyer, Ph.D.
ACKNOWLEDGEMENTS

Van Citters: Historic Preservation, LLC would like to thank the Historic Preservation Committee and in particular: Greg Walke for overseeing the project; Marsha Weisiger, Ph.D. for her research efforts and work to oversee the architectural survey completed by New Mexico State University; and Dr. Weisiger’s survey team of Brigida Blasi and Marty Davenport.

In addition we would like to thank Edie Cherry for teaming with our firm – her insight into cultural landscapes issues, the university environment and architecture, and overall project organizational skills were of great value to the project and final product of this plan.

We’d also like to thank the New Mexico State University Historic Preservation Committee:
 - Michael Rickenbaker, Director, Facilities Planning and Construction
 - Greg Walke, Assistant Director, Facilities Planning and Construction
 - Dwight Pitcaithly, Ph.D., Public History
 - William Eamon, Ph.D., Dean of Honors College
 - Sonya Cooper, Ph.D., Academic Department Head, College of Engineering Technology
 - Terry Reynolds, Ph.D., Curator, NMSU Museum
 - Pat Taylor, Cornerstones Community Partnership
 - Jean Fulton, Cornerstones Community Partnership
 - Orasa Vaught, Project Manager, Facilities Planning and Construction
 - Karen George, Dona Ana County Historic Society
 - Martha Shipman Andrews, Ph.D., University Archivist/Assistant Professor, Hobson-Huntsinger University Archives Branson Library
 - Steve McCarty, Director of Transportation, Office of Facilities and Services
 - Ron Washburn, Manager, Office of Facilities Space Management
 - Marsha Weisiger, Ph.D., Associate Professor, History
 - John Hunner, Ph.D., Professor, History
 - Rebecca Sellars, Director, Corporate/Foundation Relations Development Office
 - Patricia Grumet, Intern Architect
 - Stephen Hussman, Ph.D., Department Head, Library Archives and Special Collections
EXECUTIVE SUMMARY

In 2005 The Getty Foundation awarded New Mexico State University (NMSU) a Campus Heritage Grant to support a comprehensive survey of historic buildings and landscapes and develop historic preservation policies and guidelines to direct future conservation work and maintenance activities. According to The Getty Foundation website, these grants are designed to help colleges and universities “make plans to care for, maintain, and preserve their important historic resources.” The New Mexico State Heritage Preservation Plan was prepared by Van Citters: Historic Preservation, LLC. The goal of the NMSU Heritage Preservation Plan is to identify and discuss the historically significant buildings, structures, landscapes, and objects located on the NMSU campus, which contribute to architectural and cultural heritage of the university. In addition, the Preservation Plan is intended to supplement the university’s 2006 Master Plan for the campus and work in concert with the overall goals of that plan.

New Mexico State University has a distinguished architectural history centering on well-known regional architect Henry C. Trost. His influence on campus design and planning is still in evidence some one hundred years after its initial implementation. Subsequent campus building styles have reflected updates on Trost’s original ideas, which have in turn been influenced by more modern designs, yet continue to be regionally inspired. The university’s agricultural heritage has played an important role in shaping campus planning. The close proximity of traditional academic facilities with those specifically designed to meet the agricultural curriculum have resulted in a unique campus layout that is still visible today. Overall, the university has done a good job of maintaining its campus heritage (as reflected in its number of historic buildings) while still accommodating tremendous growth, particularly during the last fifty years.

The Heritage Preservation Plan identifies four historic districts with contributing buildings and structures: The Academic Historic District (Volume 1), the West Side Farm Historic District, the Animal Sciences Historic District, and the Sutherland-Tom Fort Historic District (Volume 2). Seven individual buildings and structures were located outside of historic districts (Volume 1). In addition, the plan discusses significant cultural landscapes, and places that contribute to the campus heritage. The historic districts and individual historic properties have been defined as those buildings, or in the case of districts, groups of buildings that meets criteria set forth for the National Register of Historic Places and is thus included or eligible for inclusion in the National Register. In addition to National Register properties, the plan has identified Heritage Conservation Places that do not meet the strict standards of the National Register, but nonetheless contribute to the university’s overall sense of place (Volume 2) (Figure 1).

In addition to listing and evaluating the variety of historic properties found at New Mexico State, the plan also offers recommendations for the maintenance and preservation of these properties in accordance with established preservation practices.
Figure 1: Map of Historic Properties at NMSU
The Heritage Preservation Plan also compares its findings with the 2006 Master Plan. Although there is general agreement between the two plans with regard to historic preservation issues, there are also areas of significant difference. These differences are summarized as follows:

1. The Academic Historic District. Substantial new construction is planned along University Avenue, on the north side of The Horseshoe. Both the Master Plan and the Heritage Preservation Plan identify The Horseshoe and the historic buildings along its perimeter as important and worthy of preservation. University planners should strive to honor the heritage of this historic core of the campus and the visual attributes of the original campus plan.

2. The West Side Farm Historic District. The west end of the university comprises agricultural fields that date to the earliest days of the campus and reflect the historic land grant status of the university. Both the Master Plan and the Heritage Preservation Plan identify these fields as important and worthy of preservation; however, it is also an area of proposed redevelopment with the construction of a new Las Cruces Convention Center complex. Care should be taken to integrate the complex with the university’s agricultural heritage, which can be accomplished through not only building design, but also through interpretive displays, signage, and preservation of the remaining fields.

3. The construction of future new academic facilities will alter the Animal Sciences Historic District. Although the need for new facilities, designed for advancements in educational curriculum, are always important issues for a university, the demolition of buildings and structures in this district would affect the look of this area. Although many students and faculty may welcome the elimination of the sights, sounds, and smells associated with the care and feeding of livestock in such close proximity to the main campus, undoubtedly others will feel a sense of loss of this aspect of the university’s heritage. The Heritage Preservation Plan recommends comprehensive historical documentation of this area prior to any demolition in order to preserve a record of this heritage.

4. A long-range recommendation in the Master Plan calls for the demolition of buildings in the Sutherland-Tom Fort Historic District. These properties retain a high degree of architectural integrity and represent an important period in post-war development for campus housing that is set within a national context. Again, the need for planned growth is often at odds with the desire for preservation; however, it is recommended that the university study alternatives and develop mitigation plans to minimize the adverse effects of any new development on these historic resources.

Although there are some points of disagreement over how best to accommodate the university’s historic properties within the framework of future campus growth, the Master Plan and Heritage Preservation Plan are in general agreement on the need for preserving historic buildings, districts, and heritage places on New Mexico State University campus. The Master Plan highlights the variety of historic preservation resources found on campus, and the Preservation Plan supplements this plan with balanced, reasonable historic preservation recommendations,
which recognizes the importance of conserving the university’s heritage while at the same time acknowledging the need for growth and development.

Finally, the Preservation Plan offers suggestions for future studies that will enhance this plan’s serviceability. The plan also contains six appendices that illuminate federal and state historic preservation legislation and guidelines, which will aid university architects and planners in integrating the preservation plan’s recommendations with overall campus Master Plan. There are also appendices that discuss other campus properties of interest – most notably those that are less than fifty years old. There is also an appendix on the Fabian Garcia Horticultural Farm which exemplifies the types of NMSU historic properties located off the main campus.

In conclusion, New Mexico State University has a long, distinguished heritage that is highlighted by distinctive architecture and a heritage that played a key role in helping to develop the state’s agricultural economy. An important goal for the university in the future will be to find a way to value those historically significant buildings and landscapes while still continuing to grow and develop as a respected academic institution.
TABLE OF CONTENTS

VOLUME 1

ACKNOWLEDGEMENTS ... i

EXECUTIVE SUMMARY ... ii

INTRODUCTION ... 1

Properties Located Off the NMSU Main Campus .. 2

PRESERVATION PRINCIPLES & PROJECT METHODOLOGY ... 4

Defining a “Historic Property” ... 4

Character-Defining Features and Maintaining Building Integrity .. 5

NMSU Architectural Survey ... 6

Integration with Heritage Preservation Plan .. 7

Public Meeting ... 7

VCHP Field Work & Archival Research ... 7

Coordinating Preservation with the Master Plan .. 8

A History of New Mexico State University ... 9

Historical Periods ... 9

Territorial Collegiate Period (1888-1907) .. 9

Spanish Renaissance Revival Period (1907-1940) .. 17

The College During World War II (1941-1945) ... 23

Post-War Expansion (1946-1955) .. 24

Regional Modernism (1955-1963) .. 26

Modernism (1963-1990) .. 28

Trost Revival (1990 – present) .. 29

The Architects of NMSU .. 30

Henry Charles Trost ... 30

Otto H. Thorman ... 32

Percy McGhee .. 33

Robert E. Merrell .. 33

Leo J. Wolgamood ... 34

W. C. Kruger .. 34

Agricultural Land Use and Landscape Design at NMSU .. 35

NMSU’s Agricultural Tradition as Expressed in Land Use ... 35

Landscape Design and Image at NMSU .. 41

Historic Properties at NMSU ... 48

The Academic Historic District ... 48

The Horseshoe (Unnumbered feature) .. 49

Building 35: YMCA Building ... 52

Building 389: Gymnasium ... 54

Building 10: Goddard Hall ... 57

Building 36: President’s House .. 60

Building 32: Young Hall ... 63
LIST OF FIGURES VOLUME 1

Figure 1: Map of Historic Properties at NMSU ... iii
Figure 2: Territorial Collegiate buildings .. 9
Figure 3: Early NMSU campus, looking north toward Science Hall 10
Figure 4: Hiram Hadley ... 11
Figure 5: The Seed House, c. 1890s .. 11
Figure 6: Original layout of NMSU's Experimental Farm fields ... 12
Figure 7: Old Main (McFie Hall), the first building on the New Mexico College campus, housed offices, classrooms, and the library. It burned in 1910. ... 13
Figure 8: The first Women's Dormitory was built in 1898 and razed in 1965 15
Figure 9: Fabián García portrait by Addison P. Center, Las Cruces, New Mexico, ca. 1901-1904 16
Figure 10: Drawings of variations of chili pods from New Mexico Experimental Station, New Mexico College of Agriculture and Mechanic Arts, 1913-14 ... 16
Figure 11: Fabián García with 14 foot high corn stalks, 1900-1910....................................... 16
Figure 12: Henry C. Trost, the university's first architect and campus planner 17
Figure 13: Spanish Renaissance Revival architecture ... 17
Figure 14: The Henry C. Trost campus plan .. 18
Figure 15: The YMCA Building and Gymnasium, designed by Henry C. Trost. These two buildings are the oldest remaining structures on the campus and reflect his Spanish Renaissance style. 19
Figure 16: Old Hadley Hall was built in 1908 and razed in 1958 .. 19
Figure 17: Otto Thorman, architect ... 20
Figure 18: Goddard Hall was built in 1913 ... 21
Figure 19: Aerial showing Miller Field and campus in 1938 .. 21
Figure 20: Kent Hall, originally a boy's dormitory, was designed by Percy McGhee in 1929 22
Figure 21: Memorial Field in 1957 ... 24
Figure 62: Young Hall.. 63
Figure 61: President’s House .. 60
Figure 60: Goddard Hall additions .. 59
Figure 59: Goddard Hall Annex .. 58
Figure 58: Goddard Hall .. 57
Figure 57: Gymnasium Building circa 1911 ... 56
Figure 56: Northwest corner of Horseshoe, circa 1911 .. 55
Figure 55: O’Louglin House .. 54
Figure 54: Chemistry Building ... 53
Figure 53: Chemistry Building Additions ... 52
Figure 52: Cracking pilaster .. 51
Figure 51: Olive Rush Murals at Foster Hall entrance .. 50
Figure 49: Churrigesque entry details .. 48
Figure 48: Concrete “trench” ... 47
Figure 47: Decorative detail .. 46
Figure 46: Additions to Foster Hall .. 45
Figure 45: Damage to vestibule accent wall ... 44
Figure 44: Foster vestibule tile ... 43
Figure 43: Accessibility alterations that affected character of Foster Hall 42
Figure 42: Dove Hall .. 41
Figure 41: Cracking pilaster .. 40
Figure 40: Exposed rough carpentry .. 39
Figure 39: Gardner Hall .. 38
Figure 38: Gardner Hall addition designed by W.C. Kruger .. 37
Figure 37: Rhodes Hall, Garrett Hall, and Hamiel Hall ... 36
Figure 36: Parapet without red tile coping ... 35
Figure 35: Garcia Annex .. 34
Figure 34: Entrance to Garcia Hall Annex ... 33
Figure 33: Air Mechanics Laboratory ... 32
Figure 32: Overgrowth of trees at entrance ... 31
Figure 31: Rusted steel window muntin .. 30
Figure 30: Figure 93: Astronomy Building .. 29
Figure 29: Figure 92: Rusted steel window muntin .. 28
Figure 28: Figure 91: Overgrowth of trees at entrance .. 27
Figure 27: Figure 90: Air Mechanics Laboratory ... 26
Figure 26: Figure 89: Entrance to Garcia Hall Annex ... 25
Figure 25: Figure 88: Garcia Annex ... 24
Figure 24: Figure 87: Parapet without red tile coping .. 23
Figure 23: Figure 86: Rhodes Hall, Garrett Hall, and Hamiel Hall 22
Figure 22: Figure 85: Gardiner Hall addition designed by W.C. Kruger 21
Figure 21: Figure 84: Gardiner Hall ... 20
Figure 20: Figure 83: Exposed rough carpentry .. 19
Figure 19: Figure 82: Cracking pilaster .. 18
Figure 18: Figure 81: Damage at window head ... 17
Figure 17: Figure 80: Chemistry Building Additions .. 16
Figure 16: Figure 79: Chemistry Building ... 15
Figure 15: Figure 78: O’Louglin House ... 14
Figure 14: Figure 77: Hadley Hall murals. Note beam ceiling, light fixtures and marble walls .. 13
Figure 13: Figure 76: Hadley Hall ... 12
Figure 12: Figure 75: Dove Hall .. 11
Figure 11: Figure 74: Dove Hall .. 10
Figure 10: Foster Hall modifications .. 9
Figure 9: Foster Hall .. 8
Figure 8: Cracking pilaster .. 7
Figure 7: Cracking pilaster .. 6
Figure 6: Foster Hall.. 5
Figure 5: Dover Hall .. 4
Figure 4: Dover Hall additions ... 3
Figure 3: Dover Hall ... 2

LIST OF TABLES VOLUME 1
Table 1. Campuses and properties owned by NMSU. .. 2
INTRODUCTION

In 2005 The Getty Foundation awarded New Mexico State University (NMSU) a Campus Heritage Grant to support a comprehensive survey of historic buildings and landscapes and develop historic preservation policies and guidelines to direct future conservation work and maintenance activities. According The Getty Foundation website, such grants are designed to help colleges and universities “make plans to care for, maintain, and preserve their important historic resources.”

Van Citters: Historic Preservation, LLC (VCHP) was selected to prepare a Heritage Preservation Plan under the terms of The Getty Foundation grant awarded to NMSU. From the outset, the development of this plan has been a team effort involving architectural historians, historians, cultural landscape architects, and NMSU faculty and graduate students from the History Department to complete the multiple tasks involved in the preparation of such a plan.

The VCHP project team was led by Karen Van Citters, CSI, CDT, principle investigator, who directed the plan’s preparation and was a major contributor to the report. Ms. Van Citters was assisted by William A. Dodge, Ph.D., senior cultural historian for VCHP, who conducted historical research and provided analysis for the evaluation of the historic properties and landscapes. Timothy L. Sawyer, Ph.D., preservation assistant for VCHP, also assisted with the historic property analysis and historical research. Teaming with VCHP was Edith Cherry, AIA, an architect and cultural landscape specialist with the firm of Cherry, See, and Reams Architects, who provided analysis of the historic landscapes on campus. Assisting the VCHP with planning and directing the public meeting was Lee Orosco, professional facilitator and NMSU alumnus.

For those readers of this plan not familiar with federal preservation law and guidelines, or terminology commonly used by preservation professionals and architectural historians, see Appendix A and the Glossary for more information on the laws and processes used in historic preservation, as well as a definition of terms.

The primary goal of the NMSU Heritage Preservation Plan is to identify and discuss the historically significant buildings, structures, landscapes, and objects located on the NMSU campus, which contribute to architectural and cultural heritage of the university. In addition, the Preservation Plan is intended to supplement the university’s 2006 Master Plan for the campus and work in concert with the overall goals of that plan.

The following objectives guided the preparation of this Heritage Preservation Plan:

- Identify the architectural and historic features of the NMSU Main Campus that contribute to its unique heritage;

- Advocate for the importance of landscape settings, which include buildings and the spaces between them;
- Provide general design guidelines that can later be used to encourage the design of future construction so as to strengthen the spatial and visual relationship between contemporary and historic buildings and sites on campus;
- Provide general guidelines for maintenance of designated cultural properties;
- Provide information on important cultural properties on the NMSU Main Campus so that those properties may be adequately considered during the course of future campus planning;
- Provide information for decision-makers to form policies and develop plans that will preserve NMSU’s heritage properties;
- Encourage the inclusion of historic preservation planning principles into current and future Campus Development and Strategic Plans.

For ease of reference, the Preservation Plan is divided into two volumes. Volume 1 offers a summary of the preservation principles guiding this study, as well as a brief history of the university, its major architects, and a discussion of landscape use on the campus. Volume 1 then goes into detail on the architectural features found in the Academic Historic District - NMSU’s oldest and most historic landscape – and the historic buildings found in the immediate vicinity of the main campus. Volume 2 offers a discussion of the campus’ other historic districts, describes other buildings and landscapes that contribute to New Mexico State’s heritage, and contains the plan’s appendices.

Properties Located Off the NMSU Main Campus

Like most state universities, NMSU educational and research facilities are not confined to the main campus. New Mexico State has other campuses and facilities located throughout the state (Table 1).

Table 1. Campuses and properties owned by NMSU.

<table>
<thead>
<tr>
<th>Principal Campuses</th>
<th>New Mexico Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSU – Las Cruces</td>
<td>Las Cruces</td>
</tr>
<tr>
<td>NMSU – Alamogordo</td>
<td>Alamogordo</td>
</tr>
<tr>
<td>NMSU – Carlsbad</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>NMSU – Grants</td>
<td>Grants</td>
</tr>
<tr>
<td>NMSU – Doña Ana Community College</td>
<td>Las Cruces</td>
</tr>
<tr>
<td>Main Center</td>
<td>Las Cruces</td>
</tr>
<tr>
<td>East Mesa Center</td>
<td>Las Cruces</td>
</tr>
<tr>
<td>Nevada Street Center</td>
<td>Las Cruces</td>
</tr>
<tr>
<td>Gadsen Center</td>
<td>Anthony</td>
</tr>
<tr>
<td>Sunland Park Center</td>
<td>Sunland Park</td>
</tr>
<tr>
<td>Chaparral Center</td>
<td>Chaparral</td>
</tr>
</tbody>
</table>
According to Mr. Greg Walke, Assistant University Architect, while most of these facilities have been developed within the past 50 years there are a number of locales that may have properties of historical interest. These include:

- The Horse Farm, Las Cruces;
- The Fabian Garcia Research Center, Las Cruces.
- The Alcalde Center for Sustainable Agriculture;
- The Jornada Ranch Agricultural Research Center in Doña Ana;
- The Clovis Agricultural Research Center; and
- Government Affairs Offices in Santa Fe.

As an example of what some of these other properties may offer in the way of historic resources, the NMSU Architectural Survey conducted research at the Fabian Garcia Research Center located just a mile west of the main campus. The survey team found a number of historic properties that resulted in the proposed designation of the Fabian Garcia Horticultural Farm Historic District. A description of this district can be found in Volume 2.

It is recommended that as funding permits, the other facilities be surveyed by architectural historians to determine whether there are historic properties at these locations.
PRESERVATION PRINCIPLES & PROJECT METHODOLOGY

Defining a “Historic Property”
The National Historic Preservation Act and the New Mexico State Cultural Properties Act created registers of historic properties and established guidelines for eligibility standards used to determine if a property should be included in either of these registers (see Appendix A, Volume 2, for a brief discussion of the federal and State laws pertaining to historic preservation). The historic properties identified on the NMSU main campus were evaluated with regard to their historic or architectural significance using standards and criteria promulgated by the National Park Service for the National Register of Historic Places (see Appendix B). These standards are also used by the State of New Mexico to determine those properties that are eligible to be listed on the State Register of Cultural Properties. The National and State Register’s criteria for buildings and structures located on the NMSU campus can be summarized as follows:

- A property associated with historical events (including important events in NMSU’s campus history) (National Register Criterion A);

- A property associated with important people (including university presidents, faculty, or campus architects) (National Register Criterion B); and

- A property that exemplifies a distinctive method of construction or a period of style (National Register Criterion C).

Buildings, structures, or landscapes that are tied together by historical events or similarities in architectural styling can also be grouped into “historic districts.” Properties located within a district are classified as “individually eligible” or “contributing” or “non-contributing” to the events or style represented in that district. Individual historic properties or districts generally have to be 50 years of age or older to be considered eligible for listing in the National Register (but not the State Register) and they have to retain their architectural and historical “integrity”, that is, they cannot have additions or modifications that have obscured or removed their architectural details, and must be in the same location or have a similar general setting as when they were built (for instance, buildings that have been moved are not generally eligible). Again, the reader is referred to Appendix B for a more detailed explanation of integrity.

It should be pointed out that neither the National Register of Historic Places nor the State Register of Cultural Properties provides absolute protection from changes to a historic property, including complete demolition. Rather, the university is required to consult with the SHPO about the effects of the proposed project on historic properties. Therefore, whenever NMSU performs general maintenance, proposes modifying, or considers demolishing a “historic building,” that is a building listed or eligible for listing on either the State or National Register, it must consider the effects of these actions (referred to as “undertakings” in federal law). There is a slight, but significant, difference on consultation requirements depending upon the funding source:
If federal funding is involved in the project NMSU must consult with the SHPO on the potential effects of the project upon the historic characteristics of the building. This applies whether the property is listed on the National Register OR has been determined eligible for the National Register.

If State funding is involved in the project NMSU must consult with the SHPO on the potential effects of the project upon the historic characteristics of the building if the property is listed on either the National or State registers.

In other words, for either of the above cases, the university must determine whether or not the proposed project has the potential to adversely affect the structure’s historic qualities (often called the “character-defining features”) of a building. The goal of the consultation process between NMSU and the SHPO is to find ways to mitigate, or minimize, any adverse effects to the property. This may include changing the specifications of the project to avoid damage to a building’s historic characteristics, agreeing to specific preservation standards to preserve the building’s character-defining features, or carrying out more detailed historical or architectural studies (“documentation”) of the building prior to implementing a project that will significantly alter or demolish all or parts of the property.

VCHP also considered NMSU properties that did not formally meet National or State Register criteria, but nonetheless contribute to the overall heritage of the university. These are referred to as Heritage Conservation Places (HCPs) and although they do not meet the strictest historical standards, they contribute to NMSU’s historical identity and campus sense of place (for a more detailed discussion, see Appendix B).

This preservation plan is designed to identify NMSU’s historic properties, point out why they are considered significant, and why they are worthy of careful consideration prior to making any major modifications or demolishing them. While, as preservationists, we would hope that most of the buildings recognized in this plan will be preserved, we also understand that a university campus is a dynamic place whose mission often requires updating or replacing facilities in order to provide the best academic environment for its students, faculty, and staff. However, we would hope that the buildings identified in the plan will receive special consideration during this planning process, either through adaptive reuse of the buildings or additions that respect the property’s original styling, or, if necessary by designing a new building that honors the historic architecture in its immediate vicinity. At the very least, any property identified as historic in this plan should be fully recorded, drawn, and photographic according standards established by the Historic American Building Survey/Historic American Engineering Record (HABS/HAER) prior to demolition or major design alteration (see Appendix A).

Character-Defining Features and Maintaining Building Integrity
It is essential to identify an historic building’s character-defining architectural or landscape features in order to preserve, rehabilitate, or restore their significant components that may have become lost or damaged through weathering, previous rehabilitation, or improper maintenance. These features are integral to a building or structure’s historic and architectural significance and integrity. Character-defining features generally include the physical make-up of the building, structure, or landscape, such as the overall shape, design, materials, craftsmanship, decorative features and aspects of site layout or landscape context.
It is important when designing a project that affects a historic property that the architect/planner first identifies the building or structure’s character-defining features and considers how the project will affect them. The project design should not adversely impact these features unless there is no other viable alternative. If there will be an unavoidable adverse effect to the features, they should be thoroughly documented by an architectural historian using a documentation plan approved by NMSU in consultation with the SHPO.

According to National Register Bulletin 15, “How to Apply the National Register Criteria for Evaluation,” (1991), integrity is the ability of the property to convey its historical significance. To do this, it is important to understand the building’s place in history and its important physical features – its character-defining features. Generally, this means that the building or structure should still sit on its original location; it should retain its basic original design; and still have visible most of its original building materials.

When planning an addition to an historic building, there are several key characteristic-defining features that need to be considered:

- **Location.** In most instances, it is recommended that an addition to a building be placed towards the rear of the structure. As an alternative, an addition could be placed to the side where it would be the least intrusive on the building’s historic character.

- **Massing.** The addition’s massing should not overwhelm the original building. In other words, if the original structure is one-story, the addition should be no more than one-story tall. Similarly, if the original building is 2,000 sq ft, the addition should be similar in size or smaller, so it does not draw attention away from the historic property.

- **Style.** The style of the addition should clearly differentiate the new building from the old. At the same time, the addition should be designed to be architecturally sensitive to the original building and be compatible in materials and style.

- **Construction.** During construction of the addition, care should be taken to preserve the character-defining features of the original building.

When planning an addition or significant alteration to a historic property, it is recommended that the university use architects and engineers experienced with designing sensitive and compatible upgrades to historic buildings.

NMSU Architectural Survey

A small team of graduate students from the History Department at NMSU, under the direction of Professor Marsha Weisiger, Ph.D., conducted the architectural survey of all buildings and associated cultural landscapes on the main campus, Fabian Garcia Research Center, and the Horse Farm that were constructed prior to 1968. Their task included conducting archival research and writing a historic context for the architectural survey, conducting the field work, and completing the survey forms. The NMSU team then made recommendations regarding the buildings’ significance with regard to eligibility for inclusion in the National Register of Historic Places and the State Register of Cultural Properties. VCHP assisted the team in developing the survey form and providing classroom training by Ms. Cherry on the recording of cultural
landscapes. VCHP then reviewed the survey work and incorporated the results (with modifications as deemed necessary) into the preservation plan.

The survey was conducted between January and August 2007 by Martin Davenport and Brigida Blasi, under the direction of Marsha Weisiger, Ph.D. They identified 91 individual buildings, three historic districts encompassing 326 buildings, three structures, 12 objects, and 17 landscapes. The historic properties identified by the survey were recorded on survey forms and evaluated by the survey team for their eligibility in the National and State registers. The results of this survey are detailed in Appendix C.

Integration with Heritage Preservation Plan

The NMSU survey was an integral part of preparing this preservation plan, and VCHP’s analysis of the survey findings resulted in a general agreement with a majority of their conclusions regarding historic significance, and the designation of individually eligible properties as well as historic districts. However, it should be noted that there are several differences of opinion regarding some properties, which affect the recommendations found in this preservation plan. These differences are detailed in Appendix C, Volume 2.

Public Meeting

A public meeting was held at the YMCA building (Conroy Honors Center) on the NMSU campus on February 12, 2008. The goal of this meeting was to inform the public of the preliminary results of the architectural survey and elicit comments on any additional properties or landscapes that the campus community thought contributed to the university’s heritage. The meeting was attended by current and former students and faculty members, university staff, and interested alumni and community residents.

As might be expected, the public’s preservation interests focused on The Horseshoe and the historic buildings in the immediate vicinity – what comprises The Academic Historic District. There was also strong support for the preservation of the agricultural landscape on the west side of the campus – part of the West Side Farm Historic District. In addition, the International Mall-Regent’s Grove-Duck Pond area generated positive comments with regard to maintaining this relatively new open space on campus. Finally, there was a lengthy discussion about the Sutherland Village – Tom Fort housing area with regard to its historic importance, not so much from an architectural standpoint, but because of its place in the social history of the university and its development of affordable student housing and its role in promoting cultural diversity. All these public comments were taken into account by VCHP when preparing the preservation plan.

VCHP Field Work & Archival Research

Once the NMSU survey was completed, VCHP conducted field investigations to verify important character-defining architectural features, clarify the details of existing building conditions, and gather any additional architectural and landscape data deemed necessary to complete the preservation plan. VCHP also gathered additional historical information to answer questions about the history of NMSU generated during their evaluation of the NMSU survey information. Historic campus maps (provided in Appendix D), including Sanborn Fire Insurance maps, and those included in early *Student Bulletins*, were very useful in analyzing the early patterning of
campus buildings and charting campus development. The sum of this work was used to develop the historic context that is presented in this document as well as describe the architecture of the university's historic buildings, discuss significant cultural landscapes, and identify other places of importance to the campus heritage.

Coordinating Preservation with the Master Plan
VCHP compared the results of the architectural survey with the “New Mexico State University Master Plan: 2006-2016” (Master Plan) prepared by the University Architect, Hanbury Evans Wright Vlattas + Company and Studio D Architects. This plan included input and comments from NMSU’s administration, faculty, staff and students, staff and leadership from Doña Ana County and the City of Las Cruces, and local residents. There were over 125 meetings conducted including on-site workshops, focus groups, planning team meetings and presentations. It should be noted that the Master Plan acknowledged that historic preservation should be a part of the overall planning process on the NMSU campus. As such, the Heritage Preservation Plan follows up on that recommendation and expands on the historic preservation concepts summarily presented in the Master Plan. The results of this analysis are detailed in Volume 2.
A HISTORY OF NEW MEXICO STATE UNIVERSITY

Historical Periods
To better understand the significance of the historic properties on the NMSU campus, it is not only important to understand the socio-historical context of their construction, but also the architectural context in which they were designed. The following context is organized by periods of architectural change and campus development. The architectural history of NMSU is a relatively simple one that generally follows trends that took place across much of the western United States during the late nineteenth and twentieth centuries.

Territorial Collegiate Period (1888-1907)
As the concept of higher education moved westward, supported by the Morrill Acts of 1862 and 1890, newly admitted states and territories such as New Mexico wanted to present an architectural symbol of social importance in their respective communities. As such, the newly created colleges and universities generally chose designs that were multi-storied, made of study materials such as limestone or sandstone blocks, and emulated high architectural styling of day – Queen Anne, Richardsonian Romanesque, Italianate or Gothic Revival (Figure 2). In addition to style, large, sturdy buildings were also favored because they served a variety of purposes when a fledgling college had only one building on its campus: classrooms, administrative office, library, and science lab.

New Mexico College’s first academic/administrative building was McFie Hall (also called Old Main), completed in 1891. Its two and one-half story design with a slender tower featured Italianate-style roof brackets and window pediments. Other buildings soon followed and were arranged rather haphazardly around Old Main. These included the imposing Science Hall with its Queen Anne styling, Wilson Hall (Agriculture) designed in a simple Territorial style, and the sprawling Women’s Dormitory with its oversized Victorian wrap-around porches. Early photos of the campus show these multi-storied buildings rising majestically above the desert landscape at the eastern terminus of the Pike. Their presence makes an architectural and social statement: “This is an important place.”

While none of these early buildings remain standing on campus today (the last building from this era was razed in 1974), they set the stage for the next generation of campus buildings that continued the pattern of building with a distinctive architectural style.
What is now called NMSU was founded in 1888 as the New Mexico College (Figure 3). The institution was chartered as a land grant college under the provisions of the Morrill Act of 1862 and the Hatch Act of 1887, and today is the state’s second largest university with seven colleges and twenty-two doctoral programs. The Morrill Act apportioned 30,000 acres of land to each member of Congress for the formation of a college, and, in 1888, although still only a territory, New Mexico received its land grant. The Hatch Act provided fifteen thousand dollars per year to each state to establish an agricultural experimental station. The individual states (or territories) were expected to establish their own curricula and to provide operating funds. Land grant colleges all focused in agricultural and mechanical arts, with the mission of educating the working class in “practical education.” Although agricultural and mechanical arts composed the primary curricula, the newly founded college in Las Cruces also taught liberal arts.¹

The College’s first president, Hiram Hadley, was a key figure in the institution’s early years. Hadley was a teacher who came to Las Cruces from Indiana in July of 1887 to be near his son, who, like many others, settled in New Mexico believing the climate would be beneficial to poor health. When Hadley arrived, he was surprised that the Catholic Loretto Academy and one small private school were the only educational institutions in the Mesilla Valley.² Despite this fact, there was already an interest in creating a college in southern New Mexico. This effort was led by local leaders such as John R. McFie, George R. Bowman, William L Rynerson, Sarah Casad, Samuel Steel, and Numa Reymond. They formed Las Cruces College consisting of two unused rooms in the back of the adobe public schoolhouse owned by Reymond. The college charged forty dollars per year for tuition, and Hadley was responsible for running the school, which was not really a college, but rather a primary school with a section for more advanced, college-bound students.

Before Las Cruces College’s first academic year was over, the Rodey Act established the University of New Mexico in Albuquerque, the New Mexico School of Mines in Socorro, and the New Mexico College in Las Cruces. At the time this legislation passed, Hadley was still involved with Las Cruces College and was planning a second academic year; however, with the establishment of the New Mexico College under the Rodey Act, and the funds from the Morrill Act and Hatch Act, the leaders of Las Cruces College turned their efforts towards setting up the new institution.

The first challenge facing the college founders was finding land for a campus. The Hatch Act required the citizens of the Mesilla Valley to donate at least one hundred acres of farmland to set up the land grant college’s agricultural experimental station. Citizens pooled their resources and through donations and purchases consolidated 200 acres of farmland and building materials. Hadley described the land they chose for the campus as one hundred-twenty acres of valley land and one hundred acres in the nearby foothills, three miles south of Las Cruces and one-half mile east of the Mesilla Park railroad station. In 1889, territorial Governor L. Bradford Prince named a Board of Regents and appointed Hiram Hadley president of the faculty (Figure 4). New Mexico College was thus set to open on January 21, 1890.

Although the agricultural college officially began classes in 1890, it remained housed in the old two-room adobe Las Cruces College building until a new building could be erected on the grounds of the new campus. However, true to its charter, the college immediately began developing its agricultural experiment station located on the west end of today’s campus, acreage that was originally part of the Jacob Schaublin ranch. As part of this land acquisition, the college had also obtained title to the adobe building situated near the acequia, and for many years this was the first building students would see as they disembarked the train and set out on foot for the college. The structure was originally called the Station Building and later became known as the Seed Lab (now called the Nematology Lab) (Figure 5). It was used for storage of supplies and seeds, but in 1893 an addition was constructed to the north which provided living quarters for the college’s agriculturalist. In the early years of the college this building was also used for dances, classrooms and laboratory space.

4 Bowman, *Hiram Hadley*, 34.
Figure 6: Original layout of NMSU’s Experimental Farm fields
Courtesy of the Rio Grande Historical Collections, New Mexico State University
The early years at the experimental station were dedicated to leveling the land, digging irrigation ditches, and deciding which crops to experiment with. By 1894, the land had been divided into eight plots for corn, orchards, trees, wheat, and a variety of other crops like onions and cotton (Figure 5). This initial platting of the agricultural lands on the college’s west side eventually influenced the layout of the entire campus. There was a dirt road running east from the Mesilla Park train depot to the Seed Lab and the college’s agricultural fields. As the college’s new buildings were constructed east of the fields, this road, now known as College Drive, was extended eastward and became the formal axis around which the campus open space and buildings were sited. This route, also known as the “Pike,” was aligned with the highest point of Tortugas Mountain located several miles to the east. Students and faculty arriving by train in Mesilla Park could easily find their way to the campus by orienting themselves to Tortugas Mountain and following The Pike eastward.

McFie Hall was the first building designed and constructed for the agricultural college and it opened in February of 1891 (Figure 6). It housed administrative offices, classrooms, a library and reading room, and faculty offices. The attorney, John R. McFie, for whom it was named was instrumental in founding the school and was the first president of its Board of Trustees. Designed by architect George E. King and built by contractor J.R. Bogardus, Old Main was a grand Italianate style building. On September 9, 1890, more than three thousand spectators turned out to view the laying of the cornerstone, made from locally quarried limestone and weighing half a ton. This celebration underscored the community’s excitement over the college’s first step toward building a permanent home. It was also during this academic year, 1890-91, that New Mexico College was officially renamed the New Mexico College of Agriculture and Mechanic Arts (NMCA&MA).

Figure 7: Old Main (McFie Hall), the first building on the New Mexico College campus, housed offices, classrooms, and the library. It burned in 1910.
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University

New Mexico Agricultural Experiment Station, “First Annual Report of the Regents of the Agricultural College of New Mexico, Concerning the Agricultural Experiment Station, 1889-90” (Las Cruces, New Mexico: 1890), 3; New Mexico Agricultural Experiment Station, “Fifth Annual Report of the Regents of the Agricultural College of New Mexico, Concerning the Agricultural Experiment Station, 1893-94” (Las Cruces, New Mexico: 1894), 4-5.

Kropp, That All May Learn, 9, 22-3, 25-6.
During the 1891-92 academic year, under the guidance of President Hiram Hadley, NMCA&MA endeavored to create a true academic institution. Although the college was primarily an agricultural and mechanical arts school, Hadley made sure students received a well-rounded liberal arts education. By 1892, he boasted that the college had more than twenty thousand books in its library, and soon the school employed professors of language, music, literature, and history. It was also during the 1891-92 academic year that the first student societies formed – Alpha Chi and the Cordeagian Society, men’s and women’s literary societies respectively. The first student religious society, the Young People’s Society of Christian Endeavor, also formed in 1891. In 1893, Alpha Chi, now called the Columbian Society, produced the first edition of The New Mexico Collegian, a monthly literary journal that was the first college newspaper in the New Mexico Territory. Students and faculty also gathered for literature readings and musical performances, at the homes of professors or at McFie Hall. In its first few decades, NMCA&MA provided a close-knit academic community, where students and professors often socialized together.

The college also became a part of the larger society in nearby Las Cruces. The library was open to the public, and professors often gave lectures and joined local agricultural, horticultural, and humanities groups. But it was athletics that became the main bridge between “town and gown.” At the end of the 1892-93 school year, the first Field Day ushered in the college’s athletic programs. On New Year’s Day, 1894, the football team traveled to Albuquerque, where they played against and lost to the University of New Mexico. This was the first intercollegiate athletic event in New Mexico Territory.11

Political conflicts plagued Hadley’s administration. Hadley, McFie, and others who were instrumental in the college’s founding were all Republicans. Local Democrats, who had gained seats on the Board of Trustees and the Board of Regents, often accused Republicans of purposely excluding them from decisions concerning the college. In 1894, they ousted Hadley in favor of Samuel P. McCrea, who had been involved with the old Las Cruces College. Hadley moved to Albuquerque, where he took up the position of vice-president of the University of New Mexico, although he would return to NMCA&MA as a professor in 1902.12

During the 1897-98 school year two new buildings were erected on campus. Science Hall, located just west of the present Chemistry Building, became the home of the Chemistry and Biology departments (Figure 3). This two-story brick building had elements of the Romanesque style, with its conical tower and arched windows. It was first occupied in January of 1898, the same year that female students moved into the Women’s Dormitory. The Women’s Dormitory was designed in a vernacular Romanesque Revival style, and featured seventeen rooms to accommodate the small number of women on campus (Figure 7). It was constructed on the west end of campus and was renamed McFie Hall after Old Main burned down in 1910.

11 Kropp, That All May Learn, 28, 34-7, 41-2.
12 Kropp, That All May Learn, 46-7.
By the turn of the twentieth century, the physical layout of the academic campus was taking shape, albeit in a rather haphazard fashion. The buildings, however, were imposing institutional-looking structures that created an atmosphere of higher learning reminiscent of more established university campuses back East. In addition to the physical changes, administrative changes were also affecting the campus environment at this time. In 1901, Luther Foster, a former administrator at Utah Agricultural College, Montana Agricultural College, and the University of Wyoming, became president of NMCA&MA. Over the next fifteen years, under Foster’s guidance and as student enrollment slowly increased, NMCA&MA became the center for innovative farming techniques in support of the state’s agricultural industry.

NMCA&MA expanded its role as an experimental agricultural school when it acquired acreage west of the railroad tracks in 1904. Known as the Horticulture Farm, and later named the Fabian Garcia Science Center, this area continued to grow in acreage until 1991, resulting in a farm of just over 40 acres. In the early years of the twentieth century, the land was leveled, irrigated, and tilled so that the horticulturists could perform several different kinds of experiments on crops, including wheat, corn, carrots, tobacco, cotton, peas, celery, peaches, grapes, onions, and pecans.13 Today, this agricultural heritage is reflected in its numerous utilitarian farm buildings, most of which are found in the Fabian Garcia Horticultural Farm Historic District. These masonry and wood frame buildings represent retain many of their original wood entry doors and sliding loading-platform doors, as well as windows, and represent examples of typical New Mexican vernacular building styles.

The Horticulture Farm is probably best known for the work of Professor Fabian Garcia (Figure 9). Fabian Garcia was born in Chihuahua, Mexico, in 1871 and came to the Mesilla Valley with his grandmother in 1875. He overcame his humble beginnings and was in the first graduating class of NMCA&MA. He went on to earn an advanced degree at Cornell University and

13 New Mexico Agricultural Experiment Station, “Sixteenth Annual Report of New Mexico College of Agriculture and Mechanic Arts, 1904-05” (Las Cruces, New Mexico: 1905), 9; New Mexico Agricultural Experiment Station, “Twenty-Third Annual Report of New Mexico College of Agriculture and Mechanic Arts, 1911-12” (Las Cruces, New Mexico: 1912); New Mexico Agricultural Experiment Station, “Twenty-Fifth Annual Report of New Mexico College of Agriculture and Mechanic Arts, 1913-14” (Las Cruces, New Mexico: 1914), 1.
returned to NMCA&MA as a professor of Horticulture. In 1913, he became Director of the Agricultural Experiment Station, a position he held for thirty-two years. His research at the experiment farm and the articles he wrote, in both English and Spanish, contributed to the successful start of the chile and pecan farming industry in the Mesilla Valley and across New Mexico. In 1913, he developed a type of wilt-resistant chili pepper that was ideally suited for southern New Mexico’s climate (Figures 9 and 10).

Figure 9: Fabián García portrait by Addison P. Center, Las Cruces, New Mexico, ca. 1901-1904
Photo courtesy the Rio Grande Historical Collections, New Mexico State University

Figure 10: Drawings of variations of chili pods from New Mexico Experimental Station, New Mexico College of Agriculture and Mechanic Arts, 1913-14.
Drawn by J.W. Rigney. Courtesy the Rio Grande Historical Collections, New Mexico State University

Figure 11: Fabián García with 14 foot high corn stalks, 1900-1910.
Photo courtesy the Rio Grande Historical Collections, New Mexico State University
Spanish Renaissance Revival Period (1907-1940)

When the College’s President Luther Foster hired Henry C. Trost of the El Paso, Texas, architectural firm Trost & Trost, to develop a campus plan and accompanying architectural style for the institution in 1907, he set in motion a concept that would influence future campus buildings for more than fifty years (Figure 12). Trost had developed an architectural theme he called “Arid America” that reflected the environmental factors found in the deserts of the Greater Southwest. Following a Revivalist trend in American architecture in the early twentieth century in which Americans looked back at its earlier architectural history for design inspiration, Trost was influenced by a variety of styles including the Chicago School, Prairie, Mission, Spanish Colonial, and Pueblo revival styles, which he blended to create what he believed would be uniquely suited to the Southwest’s arid climate. Most of the buildings Trost designed for the NMCA&MA campus drew from these styles to create what he called a “Spanish Renaissance” look (Figure 13).14

Trost’s Spanish Renaissance Revival style was picked up by both contemporary and later NMSU architects such as Otto Thorman, Percy McGhee, and Robert Merrell, who also incorporated aspects of a general Mediterranean style found not only in Spanish Mission styling, but classical Italian villas as well. Henry Trost’s influence on the university’s architectural tradition cannot be overstated; it lasted well into the 1950s and is currently being revitalized in the twenty-first century. The Spanish Renaissance Revival style represents the largest number of historic buildings on today’s campus.

As the college grew, both in new buildings and in reputation through its agricultural programs, the layout of the campus still lacked a cohesive plan. To rectify this shortcoming, Trost devised a master plan for campus development, which centered on a landscape feature called “The Horseshoe” and almost immediately gave the campus layout a focal point and the promise of an appealing green open space in the middle of the dusty, somewhat barren southern New Mexico landscape (Figure 14). He planned six buildings on either side of The Horseshoe with a central administrative building at the top of the U’s curve. Below the U, two shoulders extended to the north and south, thus providing additional open space and a “gateway” onto the campus along the Pike from the agricultural district to the west. This basic plan went unchanged well into the late twentieth century with only two modifications – the elimination of the two shoulders and the construction of the new Hadley Hall inside the curve of The Horseshoe.15

Even before The Horseshoe plan was officially adopted by the university, Trost designed his first campus buildings, the YMCA building, at the corner of Espina Street and University Avenue, and Wilson Hall, which housed the university’s agricultural department, to the south. He designed the buildings in 1907, and construction was completed in 1909.16 Two years later, a gymnasium building was built immediately to the east of the YMCA building (Figure 15). Both buildings invoke the Italian Renaissance Revival style with their arched windows and red tile roofs, although the Gymnasium’s gabled entry porch also suggests the Italianate Cottage style.17 Trost also designed a beautiful Renaissance Revival building with a Chicago-style arched entrance to serve as the college’s central administrative building. It was built in 1908 at the top of The Horseshoe’s curve directly on axis with the Pike and named Hadley Hall in honor of the college’s first president. It featured a large, galvanized-iron dome, with flanking towers and a central, two-story arched entry (Figure 16). 18 The building was razed in 1958.

Figure 14: The Henry C. Trost campus plan
Courtesy the Rio Grande Historical Collections, New Mexico State University

15 A New Mexico State University Walking Tour, 1-3; Engelbrecht, Henry C. Trost, 93-5.
16 The YMCA actually commissioned the building to give male students a place to live, exercise, and study. The university purchased the building in 1964. Together with the gymnasium (now attached to the Music Building) and the Seed House, they comprise the oldest buildings on campus.
18 Engelbrecht, Henry C. Trost, 93-5.
In 1911, the college established an agricultural extension department to advance the knowledge of dry-farming techniques in arid climates. NMCA&MA researchers touted these new techniques through extension programs across the state, and in 1912 the college collaborated with the Santa Fe Railroad to hire a special College Demonstration Train that toured New Mexico to teach dry-farming techniques to farmers throughout the state.19

As New Mexico finally gained statehood in 1912, NMCA&MA continued its moderate growth. The United States’ entry into World War I affected the campus’ student population when more than 120 students from its small student body enlisted to serve in the war. The spring semester of 1918 was shortened to two months, so that students could use the remaining time for “war work.” At the same time, the war effort also brought new students to the campus. Hundreds of soldiers arrived to take courses in such mechanical arts as engineering and blacksmithing. The war years were also affected by fluctuating commodity prices, and the agricultural department served as the center of debates and conferences on farming techniques and farm policies during this period of economic uncertainty.

Trost's influence continued to shape the campus through the 1920s with his design of Young Hall (1928). This building originally the campus library, was built in the Spanish Renaissance Revival style and featured red brick walls roofed in red tile. Young Hall was a popular gathering place because its “front yard” faced The Horseshoe and was landscaped with flowers and trees. Young Hall’s entryway originally housed two WPA murals painted by Tom Lea in 1934.

Another El Paso architect, Otto Thorman, also made a significant contribution to the early architectural heritage of the campus with his design of Goddard Hall (1913) and the President's House, now the Nason House (1918) (Figure 17). The three-story Goddard Hall, built in an Italian Villa style, quickly became an iconic structure on campus with its tall, domed tower that rose over the campus and faced onto one of The Horseshoe shoulders (Figure 16). It was built for the Engineering Department (still housed there) and named Goddard Hall in 1934, for a former dean of engineering, Ralph W. Goddard, who was a pioneer in the field of radio communication.

Figure 17: Otto Thorman, architect
Source: Photo courtesy of University of Texas El Paso Library

The concrete base of Goddard’s radio transmitter still exists just behind the building, a reminder of the college’s first radio station, established in 1924.²⁰

The 1918 President's House, located north of The Horseshoe on University Avenue, was designed as the home for the college’s president and his family. This Prairie style building, the first on campus, housed university presidents and their families for over sixty years before becoming the home of the Center for Latin American Studies in 1983.²¹ Together with Young Hall, it is one of only a few buildings on campus with its original brick walls still visible.

²⁰ A New Mexico State University Walking Tour, 18-19; Kropp, That All May Learn, 181, 205.
²¹ A New Mexico State University Walking Tour, 10-11.
The highest point of Tortugas Mountain which had always served as a point of orientation for the college was branded in 1920 by whitewashing the rocks to form the letter “A” for “Aggies.” It was laid out on March 31 of that year using a survey transit in the tower of Goddard Hall and a three mile long human chain to pass on directions. The “A” is at the apex of a line of sight that runs from the west end of The Pike (College Drive) and through the center of The Horseshoe. The “A”, which is 80 feet wide and 300 feet tall, has become such an important local landmark that Tortugas Mountain is now most popularly known as “A Mountain.”

Despite sparse funding and relatively low enrollment, NMCA&MA flourished in the first decades of the twentieth century. Not only did Henry C. Trost’s architectural plan define the look and feel of the campus, but the school’s distinguished faculty also helped to establish the college as a premier agricultural teaching institute. Campus life also flourished, with new Greek and literary societies springing up every few years. Athletics also continued to expand and in 1928, the new Miller Fields at the west corner of Espina Street and Horseshoe (site of today’s Skeen Building) were built to accommodate the growing popularity of football, tennis, track, and several auxiliary sports, such as archery.

22 Roundup, April 13, 1955, p.3.
23 Kropp, That All May Learn, 179, 197.
Henry C. Trost died in 1933, but by 1929 his protégé, Percy McGhee, of the firm Braunton & McGhee, had already taken over the design of campus buildings. Following his mentor’s vision, McGhee designed some of the most beautiful buildings on the campus during this time period. Kent Hall, named in 1938 for former college president Harry L. Kent, was designed by McGhee in 1929 and built by contractor J.C. McElroy in 1930. Originally a much needed men’s dormitory, it now houses the University Museum. This Mission Revival style building was constructed in a U-shape with an interior courtyard enclosed by a double colonnade. It also has a distinctive Moorish Arabesque style entryway and a Spanish-Moorish style bell tower.

Figure 20: Kent Hall, originally a boy’s dormitory, was designed by Percy McGhee in 1929
Photo courtesy the Rio Grande Historical Collections, New Mexico State University

Foster Hall, located on The Horseshoe, was designed by Percy McGhee and built in 1930 as the School of Agriculture and Biology. This two-story building has strong Spanish Baroque Revival (Churrigueresque) features, such as its elaborate, arched entranceway, framed with a baroque bas-relief plaster molding. Named for former president Luther Foster, the building enclosed laboratory and classroom space. It features WPA murals painted by Santa Fe artist Olive Rush.

Another building designed by Percy McGhee is Dove Hall, which was built in 1936 and sits just off the northeast corner of The Horseshoe. Originally designed to house the Home Economics Department, Dove Hall was named for Claude C. Dove, the college’s first professor of education and psychology.

During the 1930s, construction on campus included Dove Hall in 1936, a wing added to Goddard Hall in 1937, and Williams Hall. This work was supported in part by the Works Progress Administration (WPA) – a federal New Deal program. This financial support lasted into the early 1940s with the construction of Rhodes and Garrett Halls, Milton Hall, a building for the Dairy Department (now encompassed by Neale Hall), the Regulatory Building (later incorporated into Science Hall), and the Biology Annex. WPA funds were also used to install sidewalks around The Horseshoe and to paint the murals in both Young and Foster Hall.

25 A *New Mexico State University Walking Tour*, 20-21.
Land for the Agronomy Farm (now called the Horse Farm), on Union Avenue in Mesilla Park, was first purchased in 1934, to bolster the college’s agricultural department. Originally it was comprised of a mercantile building and several other structures, but within the next year, the farm was expanded with the addition of two adobe and concrete buildings: one for a residence and one for storage. A little less than sixty acres in size, the farm added badly needed lands for agronomy experiments. As the periodic droughts during the Depression years continued to worsen the farm economy of the state, the college conducted experiments with dry-farming techniques through its agricultural experimental stations.

During the late 1930s and early 1940s, enrollment increased, reaching a record high of 1,000 in 1939. This was soon to change, however, as World War II engulfed the European and Asian continents and the United States began its involvement in the great conflict.\(^\text{27}\) The college introduced new academic programs, including a new pilot training program established by Professor Daniel Boone Jett at the State College Airport, and a national defense trade school where soldiers were taught mechanical skills. By the end of January 1942, more than 150 former students had enrolled in the armed services and several had already died in combat. More students, faculty, and administrators were soon to follow, including President John Milton, who served in the South Pacific and received a silver star for gallantry.\(^\text{28}\)

The College During World War II (1941-1945)

By the end of the 1941-42 school year nearly 300 former students were in uniform and many more were at home waiting to be drafted. By the spring of 1943 some 1,400 ex- Aggies were serving in the military. The war years saw a significant change on campus. Hundreds of soldiers converged on the campus for training and the college adopted a three-term schedule for the first time to help harmonize the conflicting schedules of student-soldiers and regular students. By the mid-1940s, student enrollment dropped dramatically to about 600 students, and intercollegiate athletics were suspended. As more traditional male students dropped out, it was the student-soldier and an increasing women’s enrollment that kept the institution financially viable during this time.\(^\text{29}\)

While there was activity on campus to support the troops and continue the land grant mission, there were several delays in construction due to wartime rationing of building supplies. However, there were also WPA programs that supported buildings that were considered useful to the war effort. The Mechanical Arts building, which included an aircraft maintenance hangar and spaces in which to teach the associated mechanical skills, was completed under such a WPA program. It was completed in 1942, whereas Milton Hall (the Student Union Building) was started at the same time as Mechanical Arts but was not completed until after the war, because it was considered non-essential to the war effort.

As the war years came to an end, campus life began to return to normal and with the help of federal programs such as the G.I. Bill, the stage was set for a new era of growth at NMCA&MA.

\(^{27}\) Swastika, (New Mexico College of Agriculture and Mechanical Arts, 1941), 28-29; Kropp, *That All May Learn*, 238-257.

\(^{28}\) Kropp, *That All May Learn*, 258-75, 285, 290.

\(^{29}\) Kropp, *That All May Learn*, 275-85.
Post-War Expansion (1946-1955)

By the fall semester of 1946, enrollment was back up to more than 500 students, over half of whom were veterans. With the promise of more veterans enrolling and bringing their families, the college faced its most serious housing shortage to date. The college obtained prefabricated housing and trailers from Alamogordo Air Base and the former Carlsbad Air Forces training base to meet the demand. During World War II the military erected temporary Quonset huts on campus to serve as barracks, hospitals, and offices, and some of these were re-used for college classrooms, including two such structures used between 1948 and 1961 as Agriculture Engineering buildings on the site where Gerald Thomas Hall is now located.

The college responded to the needs of returning veterans by setting up a community center, guidance center, and nursery school to help former G.I.s and their families. A few hundred student-veterans also formed an independent veterans' association on campus to provide assistance with various problems, such as housing and hospitalization.

The year 1946 also saw the return of intercollegiate sports on campus, the popularity of which triggered a fund-raising campaign to build a new athletic stadium – the original Aggie Memorial Stadium (located on the site of the present Health and Social Services Building–see Figure 19). In 1948, the Board of Regents allocated $90,000 for the stadium, although construction did not officially begin until March of 1950. Memorial Stadium, featuring a six-story tower topped by an octagonal, red-tiled roof, was dedicated to all the Aggies who died in the Spanish-American War and two World Wars.

Figure 21: Memorial Field in 1957
Photo courtesy of NMSU Facilities Planning files

30 Round-up 7-6-1961. These two buildings were subsequently moved to Facilities Maintenance area of the campus and are still in use today.
31 Kropp, That All May Learn, 296-7.
During the 1940s, buildings were added in the Horticultural Farm in the area around the innovative Cold Storage building constructed in 1912. The new buildings were constructed in the same New Mexico Vernacular style and are still in use today. NMSU’s agricultural heritage is reflected in its numerous utilitarian farm buildings on campus, but the largest and most distinctive concentration are situated at the Horticultural Farm. The farm is laid out along either side of University Avenue, on the west side of Interstate 10, the farm currently has several buildings for storage, packing, and laboratory work, along with greenhouses, and a botanical garden, which features flora native to southern New Mexico.

When the noted horticulturalist Fabian Garcia died in 1948, he left a portion of his estate valued at $80,000 to the college in order to build a dorm for poor boys and “boys with Spanish surnames.” In 1949, Garcia’s last wish became true when the seventy-five room dorm opened. Constructed by C.H. Leavell Construction of El Paso the building served as a dorm for twenty years until it was converted into office space in 1969. After World War II, the agricultural department continued to make great strides in research, highlighted by the development of a new type of Acala cotton plant that resisted wilting; consequently, in 1949, the U.S. Department of Agriculture built the Cotton Ginning Research Laboratory across the Pike from the old seed house to encourage continued cotton research. The gin was built on land purchased from NMSU to serve farmers of New Mexico, Texas, Arizona, and California, and to help produce better ginning techniques.

In response to the Smith Doxey Cotton Classing Act of 1937, and the mechanization of cotton picking after World War II, the need for quality cotton ginning laboratories arose. The first ginning laboratory was built in Stoneville, Mississippi in the 1930s; however, there were different cotton issues in the western states, where irrigated, high-quality, long-staple cotton was grown, rather than the short-staple variety grown in the humid low-lands of the south. In 1949, a Senate commission was formed to decide on a spot for a western laboratory and the competition was fierce among members of the commission for location in their home states. A tie-breaking vote by Clinton P. Anderson, Senator from New Mexico, located the new cotton ginning laboratory in New Mexico. The college leased several acres of land to the U.S. Department of Agriculture for the lab facility, and Charles A. Bennett designed the laboratory which opened in 1949. At the time, it was one of only four in the nation (the others were in Stoneville, Mississippi; Chickasha, Oklahoma; and, Clemson, South Carolina and years later one was built at Lubbock, Texas) and was erected to serve New Mexico, west Texas, Arizona, and California.

With the onset of the Cold War, the college also became involved in defense-related research through experiments at the White Sands Proving Ground. This work increased government funding on campus and enhanced the college’s reputation for advanced training in mathematics and the physical sciences. This funding culminated in a government grant to the college’s Physical Science Laboratory.

32 New Mexico Agricultural Experiment Station, “Forty-Fifth Annual Report, Agricultural Experiment Station of the New Mexico College of Agriculture and Mechanic Arts, 133-34” (Las Cruces, New Mexico: 1934), 15.
33 Agricultural Extension News, March 1957, 6-7.
34 Kropp, That All May Learn, 322-32.
As the college continued to grow, other undergraduate and graduate degrees were also expanded during this period, including major concentrations in dramatics, journalism, and agricultural engineering. By the early 1950s enrollment increased to more than 1,500 students, prompting the college to build more dormitories and more classroom and laboratory space. In 1953 a new administration center, the new Hadley Hall, was constructed. Its red-tiled roof and arched entranceways continued the Trost architectural tradition on The Horseshoe. Branson Hall, the new library building, was completed in 1951, and the English Department moved into the old library (Young Hall) in early 1953. Other noteworthy buildings completed in the early 1950s included the O’Loughlin House built on University Avenue just east of the President’s House. Built in 1953 as a model home for the Home Economics department, this ranch house represents a benchmark of gendered education at NMCA&MA, where female students in the Home Economics department were taught how to run a proper household.

Regional Modernism (1955-1963)

This period is characterized by President Roger B. Corbett’s push to modernize the campus and develop into a large academic institution. In addition, new building technologies and materials offered architects of the 1950s a chance to experiment with modernist designs that emphasized glass curtain walls and functionality over architectural detailing. Despite these new designs, architectural firms at NMSU such as Wolgamood and Millington paid homage to the previous Spanish Renaissance Revival style with the use of stucco exteriors and red-tile roofs.

![Chemistry Building](Image1) ![Gardiner Hall](Image2)

Figure 22: Regional Modernism buildings

In 1955, enrollment reached 2,000 students. Roger B. Corbett was named president that year and promised that within fifteen years, there would be more than 5,000 students on campus, officially breaking NMCA&MA of the stigma of being a “small” institution (Figure 23). President Corbett’s intentions also included a “grow big” plan for the built campus environment. As faculty, staff, and student populations continued to grow, the need for extra office, classroom, and agricultural space did as well. The college also began making plans to offer advanced degrees beyond the master’s, and a formal graduate school was founded. President Corbett declared that the college was a proper university in every respect but its name and began working to change the name of the college.

Figure 23: Roger B. Corbett, University President 1955-70

Source: Photo courtesy of NMSU website

In 1957, Corbett announced that old Hadley Hall would be condemned and razed and several new structures would be built to usher in a modern look for the campus. Several buildings were designed and constructed in the late 1950s to illustrate this modernity. Jett Hall (1956) was the first modernist building on The Horseshoe. Not only did it diverge from the traditional Trost styling, but it also changed the layout of the Trost campus plan. The building was located on the corner of Espina Street and South Horseshoe — thus eliminating the south shoulder of The Horseshoe, which significantly altered this aspect of the original campus plan. Jett Hall was quickly followed by the Chemistry Building (1957), Gardiner Hall (1957), and the Astronomy Building (1959), all of which featured curtain walls of windows and plain concrete porches and doorway surrounds. Architecturally, these scientific buildings display a sleek, modern, technical look, but still pay homage to Henry C. Trost’s designs by retaining red-tile roofs and stuccoed exteriors.37

To relieve its persistent housing problem due to ever-increasing enrollment, the university began to build more dorms, such as Breland Hall (1954), the Hamiel Hall addition to the Rhodes and Garrett complex (1955), and Alumni Hall (1960) in what was rapidly becoming the student residential district on the east edge of the campus. The university also constructed two large housing complexes — Sutherland Village and Tom Fort Village — in 1958 and 1959, respectively, to serve as married student housing.

Sutherland Village, named for W.A. Sutherland, an early member of the Board of Regents, included 200 identical square structures featuring driveways, walled backyards, clotheslines, and modern appliances, some situated on slightly curvilinear streets reminiscent of many post-war residential suburbs. At $55 per month rent and all utilities paid by the university, it was not long before the demand for housing prompted the Board of Regents to seek funds to build another village.

A year later, 100 houses were completed in Tom Fort Village, also named for a former member of the Board of Regents. These units were virtually identical to those in Sutherland — concrete block with flat roofs, metal casement or aluminum sliding windows, and plain doors. Although these elements reflect the university’s attempts to build cheaply, other aspects of the villages show that the university was still interested in creating a true neighborhood environment for students and their families. Each street is landscaped with several different kinds of shade trees and shrubs, and a large park on the north end of Sutherland Village offers a commons area for both adults and children.

On December 17, 1958, the Board of Regents changed the name of the college to New Mexico State University of Agriculture, Engineering and Science. The engineering, agriculture, and arts and sciences schools were upgraded to “colleges,” and the first doctoral degree was issued in 1960. New Mexico State had made the transition from small state college to a major state university.

Modernism (1963-1990)

The “high tech” 1960s and 70s were reflected not only in Americans’ material culture, but their architecture as well. As NMSU’s math and science programs became more involved in cutting-edge research, new campus buildings began to reflect this with a “modern” look. Buildings from this design era shed their red-tile roofs and stucco walls in favor of more steel, glass, and concrete suggesting forms related to the International and New Formalism styles of Modernism.

Figure 24: Modern architecture

As NMSU moved into the 1960s, the faculty and students in engineering, physics, and agriculture continued to make important contributions to their fields aided by a new computer center.38 The university received numerous federal and private grants to expand its math and science programs including continued defense-related government funding throughout the 1960s and ‘70s. This increase in research stimulated the construction of new buildings in a Modernist style, exemplified by Jacobs Hall (1963) and Walden Hall (1966).

More student housing was provided through the construction of dormitories: Regents Row (1962), Monagle Hall (1965), and the new García Hall (1965). These were built on the east side of the campus in a variety of modern and Mediterranean styles, and featured large grassy areas where students could socialize and play sports. This continuous building cycle, starting in the mid-1950s, affected some of the more traditional “gathering spots” on campus such as McFie Circle, which had evolved over time to serve the student housing area on the east side. New construction, such as Zuhl Library, a large addition to Breland Hall, and the Corbett Center (the new student union), together with a large parking lot, eventually altered campus street alignments, and the Circle had virtually disappeared by the 1980s.

Figure 25: Monagle Hall, formerly the Women’s Residence Center, was built in 1965 and still functions as a dormitory.
Photo by Brigida Blasi

38 The name of the college was legally changed to New Mexico State University by a state constitutional amendment in 1961.
Trost Revival (1990 – present)
Within the last two decades there has been a revival of Henry Trost’s original Spanish Renaissance Revival designs. Although these newest buildings on campus employ modern materials and construction techniques, there is an unmistakable Trost-influenced styling in their architectural design. Locally on campus, this style has also been called “Trost Revival.” In 1992 a revival of the Trost idiom became the formal architectural vocabulary for the campus.

By 1990, the academics and student body of NMSU had grown exponentially and Martin Hoffmeister, the university architect, developed a new master plan for the campus. Hoffmeister, trained at the Prague Academy of Arts, Yale, Harvard, MIT, and the University of Chicago, wanted the campus to look more like the original master plan devised by Henry C. Trost. Skeen Hall (1999), which sits at the corner of Espina Street and North Horseshoe on the site of the old Miller Fields, is an example of his attempt to return to Trost’s look. Skeen Hall has many of the elements of the Spanish Renaissance Revival look with its red-tile roof, stuccoed exterior, and decorative domed tower. To accommodate a large student body and add visual appeal to the campus, Hoffmeister also designed landscapes, pedestrian malls, and bicycle paths. The area on the east side of the campus between the residential area and the Pan American Center was designed to be a mirror of The Horseshoe; however, Regents Grove and the Duck Pond are all that remain of that original plan.39

As the university enters the twenty-first century, student enrollment on the main campus is more than 16,000, and its colleges now offer more than seventy fields of study for undergraduate degrees, fifty masters degrees, and twenty-two doctoral degrees in all major fields of study. It is home to the state’s NASA Space Grant Program and has agricultural extension programs in every county of the state.

39 A New Mexico State University Walking Tour, 3-5.
The Architects of NMSU

Henry Charles Trost

Henry Charles Trost (1860-1933), was born in Toledo, Ohio, to German immigrants Wilhelmina and Ernst Trost. Ernst Trost was a carpenter and building contractor, from whom Henry received his earliest tutelage. After attending art school in his native city, Henry moved to Colorado, living first in Denver, and then in Pueblo. Largely a self-taught architect, Trost opened his first office in Pueblo in 1880. Trost subsequently lived in Chicago for nearly a decade (1888-1896), where he was influenced by Louis Sullivan and Sullivan’s protégé, Frank Lloyd Wright. During this time Trost was a designer of ornamental metal and may have worked in this capacity for the firm of Adler & Sullivan. He was influenced not only by Sullivan and Wright, but also by the Mission Revival-style California Building at the 1893 World’s Columbian Exposition in Chicago.

By the time he moved to El Paso in 1903 to join his brother in forming Trost & Trost, Henry C. Trost was already in the process of developing a stylistic variation on American architecture that was adapted to the region he called “arid America.” Trost was prolific, designing hundreds of buildings large and small, and versatile as well, working in a multitude of styles, from Victorian to Art Deco. The majority of Trost’s 600 designs were for buildings in his adopted hometown of El Paso, but he also realized many projects in Albuquerque, Phoenix, and Tucson, in addition to the plan for NMSU he developed in 1907. His El Paso firm of Trost & Trost was commissioned to design the first architectural plan for the growing campus of New Mexico College of Agriculture and Mechanic Arts (NMSU). The campus plan that emerged, the only one (inclusive of both landscapes and buildings) undertaken by Henry C. Trost in his long and varied career, was the original layout for “The Horseshoe,” the quarter-mile long landscape that is the historic center of NMSU’s main campus. The plan called for six buildings to be constructed on either side of The Horseshoe, itself a pair of parallel east-to-west-running boulevards curving to meet at the east end, with a large, domed administration building centered at the “bottom” of The Horseshoe.

According to *A New Mexico State University Walking Tour: A Legacy of Henry C. Trost*, “all Trost’s designs include Mission Revival (or Southwestern Style) and elements of the Prairie style.” His early exposure to two of the leading architectural theorists of his day, Sullivan and Wright, followed by his sojourn to Tucson in 1899, where he first observed examples of Spanish Mission architecture, helped Trost become the architect of the “Spanish Renaissance” revival-style for which he became known, and which is so evident in his NMSU buildings. According to the YMCA Historic Structure Report, Trost’s campus buildings distilled many of the elements of the “architectural vocabulary of the prominent architects at the turn of the century. By the time Trost designed the university campus they had become a part of the American architectural vernacular . . . [and by including] indigenous southwestern styles . . . Trost created a style for the campus that occupies a unique and important place in the region’s architectural heritage.”

Trost’s Spanish Renaissance Revival idiom varies somewhat from building to building, but distinguishing common characteristics among the surviving buildings usually include shallow-pitched, red clay-tile roofs, reminiscent of California mission architecture, plus bracketed overhangs as an adaptation to the warm, sunny climate; a “banded” appearance in the elevations and an often elaborate entryway, recalling Italian Renaissance (especially Palladian)
structures; and a square or rectilinear massing. The rectilinear massing of the buildings, along with the aforementioned elevation banding and the roof overhangs, are all also suggestive of Wright's Prairie style, adapted to the arid Southwest. Originally all of Trost’s NMSU buildings were built using reddish brick masonry; all but Young Hall have since been covered with stucco.

In one of the only direct expressions of his architectural aesthetic known to exist, a 1907 pamphlet issued by Trost & Trost, Henry Trost wrote of the adaptive ingenuity of his Spanish predecessors in designing for the climate of the Southwest:

Back of [the] Spanish Mission style is more than mere imitation – more than a fad – more than a return to the simplicity of an earlier period…..With accurate instinct, the old Spanish builders adapted their structures to the requirements of the environment. …The climate of the arid southwest, as well as the physical aspect, is marked by sharp contrasts. The difference between night and day temperature [sic] is 30 to 40 degrees, or double that if the day temperature be read in the sun. The sun’s rays strike the earth directly, for the atmosphere is dry, and there is no blanket of water vapor in the air to absorb and retain the heat, [and] for the same reason, it is always cool in the shade, and the breeze blows constantly. Natural vegetation is scant, and neutral in tone. The object, therefore, is to build so as to cut off the intense heat of the sun in the summer, to retain the artificial warmth of the house in winter, and to create a green, flowery oasis for man’s pleasure and comfort. This threefold end was attained by the Spaniards with their thick walls, patios, deep porches, and large, high-ceiled rooms.40

Trost used the phrase “arid America” to describe the distinctly regional variant of the Spanish Mission style:

It is interesting to observe how the various American Colonial styles and the ancient classic styles have affected the Spanish Mission or “arid America” style, especially when applied to larges masses or high structures. The long, simple lines remain, with the impression of solidity, and the perfect adjustment to the environment. But ornamentation plays a less important part, the column takes classic form, and the arch is flattened, simplified, and used more sparingly.41

Trost appears to have adhered to these ideas in his own designs for the NMSU campus, for the most part keeping the main masses of his campus buildings simple, using ornamentation sparingly. The only exception, Old Hadley Hall, which was the centerpiece of the campus plan, was an homage to the Renaissance architect Brunelleschi’s domed cathedral, Santa Maria del Fiore in Florence. Old Hadley Hall no longer exists, having been razed in 1958 to make space for new buildings on the fast-growing campus.

Thirteen buildings were to have been constructed under Trost’s original campus plan; only six were actually built, including the aforementioned Old Hadley Hall. Three survive today: the YMCA building (1907), the Music Building (1911), and Young Hall (1928). Not only was the full complement of Trost buildings never built, his proposed series of arcades or “loggias”

41 Ibid.
connecting the buildings along The Horseshoe, intended to create an integrated central campus area within which students and faculty could comfortably circulate, was also never realized.

The original 1907 plan and architectural style provided the template for NMSU’s buildings well into the 1950s, and buildings erected at NMSU before the mid-1950s often directly reflected Trost’s influence. However, the university’s burgeoning enrollment after World War II resulted in a need for new classroom space, which in turn caused campus planners to make changes to the campus’ original design – for example, the building of Jett Hall in 1955 on The Horseshoe’s south “shoulder” and the expansion of the campus to the east and south in the 1960s.

Trost’s influence on later NMSU building designs can be seen in Otto Thorman’s President’s Residence (1917), and Goddard Hall (1913). Former Trost associate and protégé Percy McGhee carried on Trost’s architectural spirit in the design of Kent Hall (1929) and Foster Hall (1930). The Trost tradition continued into the 1940s and 1950s through the work of Jerry Schaefer and Robert Merrell who designed Rhodes and Garrett dormitories (1941) and the second Hadley Hall (1953), and through the architecture firm of Wolgamood and Millington who designed Gardiner Hall and the Chemistry Building (both 1957) that began to incorporate more Modernist detailing, but retained such Trostian features as symmetrical massing plans, red clay-tile roofing, and a distinctively Southwestern regional style.

Although campus building design turned markedly more modernistic after 1960s, by 1990 the new Master Plan by University Architect Martin Hoffmeister recognized Trost’s importance to the school’s architectural legacy, and urged a return to the Trost idiom for future development at the university. Hoffmeister’s plan also expressed a new focus on returning the campus to the kind of pedestrian circulation system originally envisioned by Henry C. Trost: “Outdoor spaces will be developed for pedestrian malls and green areas. Pedestrian malls will form a network connecting all classroom buildings. Green areas will be connected by a shadow network to permit walking in the shade.”

As NMSU heads into its second century, the guiding spirit of Henry C. Trost, with his pioneering insights into the practical and aesthetic consequences of an architecture style for arid lands, still lingers over the high desert campus he designed over a century ago.

Otto H. Thorman

Otto H. Thorman (1887-1966) grew up in St. Louis, attended Architectural Night School at the University of St. Louis, and began his career as a draftsman at Maureen, Russell & Garden. He was known for working mainly in the Spanish Pueblo Revival style during his career, and was tapped to design the president’s house at the University of New Mexico, although his design was never implemented. From 1909 on, he worked out of offices in Albuquerque, and in 1911 he opened a separate office in El Paso, where he eventually settled permanently.

In the second decade of the 20th century, Thorman was responsible for two iconic NMSU buildings. Thorman designed Goddard Hall (1913), which paid homage to the Spanish Renaissance Revival style that Henry Trost had inaugurated at the school. This Mission-Style

building was the first on campus to employ a prominent Mission-style bell tower in its design; this bell-tower motif would be repeated by subsequent architects at NMSU.

Otto Thorman also designed the NMSU President’s Residence (1917) where he used the Prairie style of architecture, which was one of the predominant “modern” house types of the time. While the Nason House, as the President’s Residence is now known, is clearly built in the Prairie style, it is also clearly related to Trost’s earlier Spanish Renaissance buildings: Romanesque arched windows, brick construction, and the shallow pitched hip roof with overhanging bracketed eaves all pay homage to Trost’s YMCA Building, Gymnasium, and Young Hall.

Percy McGhee
Percy McGhee (1889-1971) was born in Waco, Texas, and became the second university architect for NMSU following the death of his mentor, Henry C. Trost. McGhee designed Kent Hall (1929), which continued the Trost tradition of Spanish Renaissance Revival style and has become an iconic building on the NMSU campus. McGhee’s Kent Hall, a large red clay-tile roofed building with a square central courtyard, arcades along one side of the courtyard, a Moorish bell tower projecting from the main entryway and Moorish ceramic tile panels above two doorways, was probably McGhee’s most visible contribution to NMSU’s campus. McGhee was also responsible for the design of Foster Hall (1930) and Dove Hall (1936), both of which follow the Spanish Renaissance Revival style.

Like Trost, McGhee worked in a number of different architectural idioms, including Prairie style, Tudoresque, Spanish Colonial and Spanish Pueblo Revival, and, late in his career, even in the International/Modern style in the Murray Hotel (1937) in Silver City, New Mexico. In Las Cruces, in addition to his NMSU buildings, McGhee designed the Doña Ana County Courthouse (1936-39), a Spanish Pueblo Revival building, and the 1934 Thomas Branigan Library (now the Branigan Cultural Center), also in the Spanish Pueblo Revival Style. He perhaps best know for continuing the “Bhutanese Revival” style initiated at the University of Texas El Paso (UTEP) by Charles Gibson and George Robertson based on initial designs by Henry Trost.

Robert E. Merrell
Robert E. Merrell (1895-1947) was born in Keller, Texas, and received a BS in Architecture in 1919 and an MA in Architecture in 1921 from Texas A&M. His first professional experience came in the office of the college architect at Texas A&M, and after working for several years for private firms in Texas, he came to New Mexico in the late 1920s, where he designed the Clovis Hotel (1932), for a time the tallest building in the state, in a “Pueblo Deco” style. He was also known for designing school buildings around the state of New Mexico, in addition to buildings at college campuses, notably the Roosevelt County Museum at Eastern New Mexico University (1940).

In the 1930s Merrell worked on Work Progress Administration projects and while a partner in the firm of Schaefer and Merrell (formed with Jerry Schaefer in 1938), he designed Milton Hall, Garrett Hall, and Rhodes Hall, all in 1941, and all in Spanish Colonial Revival style. With his design of Garrett Hall, Merrell acknowledged the earlier work of McGhee’s Kent Hall and Thorman’s Goddard Hall, both of which feature prominent Moorish or Mission bell-towers at their main entryways. Merrell’s design of the new Hadley Hall (1953) at the east end of The
Horseshoe is a later Schaefer and Merrell building, which shows a more purely utilitarian influence than his earlier work on campus. New Hadley Hall does retain some features of the Spanish Renaissance Revival style such as a front-gabled entryway dominating lower symmetrical wings (similar to Rhodes, Kent, and Garrett Halls), but otherwise it signals the beginning of a movement away from traditional styles at New Mexico State toward more a more Modernist approach.

Leo J. Wolgamood

Leo J. Wolgamood (1904-1975) was born in Colorado Springs, Colorado, and after attending college and traveling in Europe, Mexico, and Cuba, worked as a draftsman at the architectural firm of Klauder and Huntington, and later at Fisher, Fisher, & Hubbell. After working as a draftsman for the influential John Gaw Meem in Santa Fe from 1941-42, he served in the Civil Engineer Corps of the U.S. Navy from 1942-1946. In 1946, Wolgamood became a Registered Architect and formed a partnership with Alfred R. Millington in Santa Fe.

In the mid-1950s, Wolgamood designed a number of school buildings in New Mexico, including high schools in Alamogordo, Gallup, Bayard, the Cristo Rey School in Santa Fe, and a men’s dormitory at New Mexico Tech in Socorro. At NMSU, Wolgamood designed Breland Hall (1956), Gardiner Hall, and the Chemistry Building (both 1957). The latter two buildings reflected the trend towards Regional Modernism by incorporating Modernist styling, such as large glass curtain walls at the main entries, with earlier Spanish Renaissance Revival styling, such as red-tile roof parapets that emulate the work of Trost and McGhee.

W. C. Kruger

Willard C. Kruger (1910-1984) grew up in Raton, New Mexico, and received a university degree from Oklahoma A&M College in 1934. One of the most illustrious of New Mexico architects in his time, Kruger served as State Architect from 1936-37, after which he went into private practice, eventually establishing W.C. Kruger and Associates architectural firm in Santa Fe, which stayed in business for over fifty years. During the time that he practiced, Kruger was the architect for many important projects, including several New Deal projects under the Public Works Administration (PWA) and Works Progress Administration (WPA), such as the Mora County Courthouse (1939) and Socorro County Courthouse (1940). His firm also designed the Carrie Tingley Hospital in Hot Springs (now Truth or Consequences, 1937), and Clayton High School (c. 1936). All were designed in the Spanish Pueblo Revival or Territorial Revival styles.

In the post-World War II era, W.C. Kruger and Associates were responsible for a large number of highly visible projects, including the Los Alamos Master Plan (1947, both the laboratory and the town – Kruger’s was the only private architectural firm employed by the Manhattan Project); the Corp of Engineers Building, Sandia Base (1950); the Governor’s Mansion (Santa Fe, 1955); the UNM Medical School Basic Science Building (Albuquerque, 1965); and the state Capitol Building (Santa Fe, 1966). At NMSU, W.C. Kruger and Associates were responsible for the design of the Pan-American Arena, the home of the university’s men’s and women’s basketball and volleyball teams, which was dedicated in 1968, as well as numerous distinctive additions to existing university buildings, such as Chemistry and Gardiner Hall.
Agricultural Land Use and Landscape Design at NMSU

The university was established under the terms of the Morrill Act of 1862 (re-authorized in 1890). The act, named after its sponsor Congressman Justin Morrill of Vermont, gave every state (or territory) in the Union a grant of 20,000 acres of public land for every member of its congressional delegation. The states were to sell this land to raise funds to establish colleges in engineering, agriculture, and military science. In 1889, the territory of New Mexico, following the stipulations of the Morrill Act, established the land-grant agricultural college and experimental station in Las Cruces. Originally named the New Mexico College of Agriculture and Mechanic Arts, what is today NMSU continues the traditions of its land-grant heritage by offering programs in agricultural research, extension education, and public service.

NMSU is one of only a few agricultural universities in the United States located in a desert environment, in this case the Chihuahuan Desert. The Chihuahuan Desert is somewhat unique in that it is located at a relatively high elevation - 2,000 to 5,000 feet above sea level in the vicinity of Las Cruces. At this altitude, winter temperatures can drop down quite low with freezing temperatures lasting several days not uncommon. Native plants include creosote bush, white thorn, candelilla, and mesquite (Figure 26).

Figure 27: Creosote bush and mesquite growing on the far eastern edge of the NMSU campus

As a land grant educational institution, chartered to engage in agricultural research, NMSU’s experimental stations are strategically positioned to conduct research on how to grow food and livestock in marginal environments. This is becoming increasingly important on a global scale as the world population grows and demands for food production increase in light of an ever-shrinking arable land base. The land grant universities in desert climates are thus on the “cutting edge” of research that explores the potential for increasing the carrying capacity of desert lands.

NMSU’s Agricultural Tradition as Expressed in Land Use

Since opening its doors in 1890, NMSU has been involved in research on the effects of agriculture in arid lands and the use of irrigation. Such research was a natural outgrowth of land use traditions of the college’s location in the Rio Grande valley, whose agricultural patterns were first developed by Native American tribes in the region and later codified by the Spanish land grant tradition. This Hispanic tradition utilized plots of land located almost perpendicular to the flow of the river that was the source of irrigation. Diversion dams of various types were built upstream to channel the water into the main irrigation ditch (the acequia madre) and from which smaller ditches (laterals or acequias) diverted this water into the fields (Figure 27).
The land on which the university is situated was once part a farm owned by Jacob and Bertha Schaublin, who gifted it to the fledgling school. The plot contained 100 acres and was perpendicular to the flow of the Rio Grande. The east-west axis of this land parcel would soon become the most dominant feature of the campus layout. The farm land used by Schaublin and subsequently by the college was watered in part by an acequia located at the west end of the parcel (Figure 29).

Figure 28: Diagram of a typical irrigation system

Figure 29: Schaublin land granted to the Agricultural College and Experiment Station as depicted on a bronze plaque attached to the Miller Gates.
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University
Upon completion of the Elephant Butte Dam in 1916 and the subsequent establishment of the Elephant Butte Irrigation District (a part of the Bureau of Reclamation's Rio Grande Project initiated in 1912), the small acequia serving NMSU's farm land was improved in the early 1920s and named the Las Cruces Lateral. The total length of the lateral is 13.72 miles as it winds it way through the City of Las Cruces, across the western corner of the university, and eventually rejoins the river several miles south of the city. The district is listed on the National Register of Historic Places and the New Mexico State Register of Cultural Properties (Figure 30).

Figure 30: The Las Cruces Canal in 2007

Based on the analysis of early photographs of the campus, the college’s farm fields were located generally uphill of the acequia and were irrigated by well water. Figure 30 shows the farm layout 1883. Note that a pump house is shown at the east end (uphill) of the agricultural fields. A ditch from the pump house runs south and then curves to the west and runs downslope paralleling the fields. Figure 31 shows an irrigation ditch running from east to west, toward the south side of the fields, with the original campus buildings in the background to the east. The date of the photo is not known, but it is post-1913 because Goddard Hall can be seen to the right of the center of the photograph. The southern edge of the campus in this area is slightly higher than the northern edge, contrary to the overall slope of the valley; therefore, placing the pump and ditch at the high edge was the logical way to irrigate the fields to the north. The remains of this ditch may be reflected in the border of the fields on the southwestern section of the campus today.

Figure 30 also indicates the variety of crops grown in the late nineteenth century, which were far fewer than what is grown in the Mesilla valley today. Figure 5 also shows a tree-lined road running east and west and an “L” shaped building labeled “Station Building.” This building was undoubtedly the so-called “Seed Lab,” now known as the Nematology Building, while the tree-lined road is “The Pike,” also known as College Avenue.

Figure 32 is an overlay of the planting map on a current satellite view of the campus. It clearly shows how the college’s agricultural fields came right up to the edge of the newly constructed academic buildings. This land use patterning is also shown in early campus photographs. Figure 33 shows Goddard Hall and Wilson Hall with crops planted immediately to the west of the buildings. The fields were neatly fenced, and rather elaborate gates highlighted The Pike’s entrance to the campus. The land to the north of the YMCA, now called the President House Yard, appears to be planted in a similar way. Note that rows of trees had also been planted along the roads, probably as wind breaks.
How these fields, that are uphill of the Pump House, were irrigated is not understood. Water could have been pumped up to the fields from the well, or another well could have been drilled upslope. Later aerial photographs show a water tower east of all the campus buildings. Figure 34 also shows the close proximity of the agricultural department's livestock pens to the campus buildings.

Figure 31: Planting map at the college's experimental farm in 1894.
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University
Figure 32: Irrigation ditch (looking east) on the southern edge of the college’s agricultural fields
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University

Figure 33: Overlay of the original planting map on a recent aerial
Figure 34: Photograph, circa 1918, showing plowed fields in The Horseshoe
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University

Figure 35: View of campus (Goddard and Wilson Halls) with Department of Agriculture animal pens in the foreground.
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University
Landscape Design and Image at NMSU

Very early on, the Board of Regents was aware of the visual image of the campus landscape. A campus publication from December 9, 1908, reported:

The Board of Regents in a recent meeting, made provision for graveling and decorating the campus. President Garrison was given authority to go ahead with the work, and he intends to do so at once. A scheme for the lower part of the campus has already been formulated and by next Spring the beautiful sage brush and the cactus gardens will be a thing of the past. The part of the campus which lies in front of the old main building and extends to the north as far as the YMCA building will be shorn of its sage brush covering. The cactus gardens will be removed to a more artistic site, probably, it will occupy a small plot in front of the science hall and south of the YMCA.

Despite this pronouncement, it was some time before the school grounds imitated the mature landscaping of older college campuses. In the early 1930s irrigation systems for lawns were developed and soon thereafter the college apparently embraced the idea of irrigated lawns, thus accepting the idea that landscaping was a necessary part of presenting an attractive campus image. By 1938, campus landscape designers had transformed the former farm fields into lawns and tree-lined blocks. Figure 35 shows The Horseshoe planted with grass with mature trees forming landscape boundaries. The open space west of the President’s House (north of the YMCA and Gymnasium building) is also planted with grass and tree-lined.

![Figure 36: 1938 aerial photograph of the campus looking east showing mature landscaping on The Horseshoe and the President’s House. Photo by Ray Boutz, courtesy of the Rio Grande Historical Collections, New Mexico State University](image-url)
As the campus grew and more buildings were constructed, the agricultural fields together with the livestock pens on the west side of campus became “land banks” awaiting future development. This pattern is a familiar one on almost all university campuses, where athletic fields and parking lots eventually give way to building sites. The early photos and the campus today illustrate this process at NMSU.

The following is a synopsis of the more prominent landscape designs on campus.

The first landscape feature on campus was “The Pike” – the historic name for present-day College Drive which runs a little over one-half mile east from the edge of the main campus adjacent to Interstate 10 to its terminus at The Horseshoe at Espina Street. In the late nineteenth century, the Pike was a wagon road/footpath linking the railroad station at Mesilla Park to the campus, and its alignment with Tortugas Mountain gave incoming students and faculty a reference marker for finding the college in its formative years. Starting out as a wagon road, it has since been graded, widened, and paved. Beginning in the early 1930s, however, the road was tree-lined in an almost a country lane-like setting (Figure 36). Today, most of these mature trees have died or otherwise been removed and in their place are newer, smaller versions of this historic landscape feature.

Figure 37: The tree-lined Pike, date unknown
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University

NMSU’s most historically noteworthy and recognizable landscape is “The Horseshoe.” Created in 1907 by Henry Trost, The Horseshoe was the centerpiece of campus’ master plan for development. As originally designed, this landscape icon was laid out in a modified U shape that was oriented east-west. The closed end of the U was on the east while the open end faced the college’s agricultural fields. At the west end, Trost extended the U shape to the north and south by creating two shoulders, which provided additional open space and served as a “gateway” onto campus from the west (Figure 37). Trost planned six buildings on either side of The Horseshoe, including a central administrative building at the top of the U’s curve.

This basic plan went unchanged until 1955 when Jett Hall was constructed on The Horseshoe’s south shoulder. This resulted in not only a loss of open space on the main campus, but affected the orientation of Goddard Hall. As originally planned, Goddard Hall’s main entrance faced west and overlooked the shoulder’s open space. By building Jett Hall on this space, the effect of Goddard’s orientation was lost except to those who understood The Horseshoe’s original plan. Matching the orientation of Goddard Hall on the north shoulder was the college’s first Science Building which also faced west and overlooked the open space adjacent to the YMCA Building. The Science Building was demolished in the 1950s and replaced by the Chemistry Building,
which was designed to face south. The north shoulder was subsequently paved over for a parking lot, thus further diminishing Trost’s original design.

The Horseshoe has also undergone other physical changes with regard to landscaping. As noted above, agricultural fields dominated the landscaping even after Trost introduced his master plan. However, not long after, the landscape began to take on a more urbane collegiate appearance, rather than an agricultural one. Very early on, decorative stucco entry gates with wrought iron fencing were erected at the west end of The Horseshoe (Figure 38). At the same time, footpaths, some flanked by mature trees, began to bisect and crisscross the open space (Figure 39). Today these footpaths no longer exist, and trees have been randomly planted within The Horseshoe.

Figure 38: Trost’s original 1907 plan for The Horseshoe.

Figure 39: Entry gates to main campus, circa 1914. Goddard Hall is seen in the background
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University
Another interesting landscape feature is McFie Circle. It is generally bounded by Corbett Center and Garcia Annex on the east, Breland Hall, the Student Health Center and Zuhl Library on the south, and the Zohn-Jacobs-Hardman building complex on the west. The circle itself originally encircled Milton Hall, the former student union, and an entrance to the north along Jordan Road. The development of McFie Circle is a particularly interesting study of land use and development on the campus.

Prior to 1955, there were no campus buildings in this area (Figure 43). A curving perimeter road linking University Avenue with Espina Street provided access to the south side of campus – roughly following what today is Jordan Road and Gregg Street. In the 1940s, the campus expanded eastward across the perimeter road (Jordan Road) to build dormitories – Rhodes and Garrett Halls, and Garcia Memorial Hall (now Garcia Annex). This was followed by the construction of Breland Hall and the third wing of the Rhodes/Garrett complex, Hamiel Hall, in 1955 (Figure 44). The grouping of these dormitories, together with the construction of Milton Hall in 1941 on the west side of Jordan Road to serve as the university’s student union, formed a student living area that soon developed into a natural gathering place for informal recreation and socializing.
Figure 41: Aerial photos of the campus in 1938 (top) and 1948 (bottom) showing the perimeter road along the southeast side of the campus prior to the development of McFie Circle. Photo courtesy of the Rio Grande Historical Collections, New Mexico State University.

Figure 42: 1957 aerial showing development to the east of Jordan Road and the beginnings of a student living area on the east side of campus. Photo on display in Hadley Hall.
The construction of the Student Health Center immediately to the west of Breland Hall in 1965 dramatically altered the street system in this area (Figure 45). The arc of the curving perimeter road was cut off, and two north-south streets flanking the health center were constructed. The resulting street reconfiguration created a circular drive that became known as McFie Circle. This drive served the dormitories and created a large parking lot in its center with access points coming from the north, south and west. The western access, coming from the rear of new Hadley Hall, was subsequently cut off by the construction of Hardman Hall.

![Figure 43: McFie Circle in 1965](image)

Photo courtesy of the Rio Grande Historical Collections, New Mexico State University

By the late 1960s and early 1970s, McFie Circle had become a well-recognized gathering spot for students, who drove onto campus, parked, and “hung out” at the newly constructed Corbett Center student union, which was completed in 1968. By the late 1960s, additional dormitories, including Monagle Hall, the new Garcia Hall, and the Alumni Dorms (now demolished) had increased the number of students living in this area (Figure 46). The “circle” is now partially obliterated by new campus buildings and pedestrian walkways that have replaced streets; however it is still known by its historic name.

![Figure 44: McFie Circle circa 1970](image)

Photo courtesy of the Rio Grande Historical Collections, New Mexico State University

As the campus expanded both east and west, other “new” landscape features, both formal and informal, developed. For example, McFie Circle, a well-known campus gathering place during
the 1960s, was created almost ad hoc through a combination of street re-configurations and student interests; meanwhile, Frenger and International Malls, Regent’s Grove and the Duck Pond were planned design features that took shape as the campus closed itself off from outside vehicular traffic. Within a short period of time, these places have become fledgling heritage zones which have developed a place attachment for NMSU students, faculty, and staff and are discussed in more detail under the Heritage Conservation Places section.

There are other important landscape design features on campus. Trees become important landscape features, which over time contribute to the university’s heritage and sense of place. The university has a long history of tree planting, particularly rows of trees that border streets and roads along the edge of campus. Early photos indicate that this arboreal alignment has been a campus feature from the early 1900s. One of the tree species frequently used is the Afghan Pine (Pinus eldrica) (Figure 47). This evergreen is well suited to the dry climate and hot summers of Las Cruces. It is used as a wind break in the agricultural fields at the Fabian Garcia Horticulture Center, and as a visual and sound barrier to traffic along busy University Avenue.

Figure 45: Rows of Afghan Pines provide a wind break for fields and a sound and sight barrier along streetscapes.

Another tree species that is growing in popularity on the Campus is the California Fan Palm (Washingtonia filifera). Although palms are not native to the Chihuahuan Desert, they generally grow well in the Las Cruces area. The first palm planted on campus is reported to be located on the west wall of Jett Hall (Figure 15). The use of this species was popularized by Baker Morrow’s design for the courtyard at Zuhl Library.

Figure 46: Reportedly the first palm tree planted on the NMSU campus

The use of rock retaining walls on campus is also a part of a masonry tradition prevalent in southern New Mexico and the El Paso area. These sloped or vertical walls, made of limestone, are frequently used as landscaping detail at the university, particularly in the historic academic district (Figure 49).

Figure 47: Sloped limestone masonry retaining walls
HISTORIC PROPERTIES AT NMSU

The Academic Historic District
The Academic Historic District, the core of the early Trost designed campus, is comprised of both Spanish Renaissance Revival and the Regional Modernist styles of architecture that span a period of significance from 1907 to 1959. For the most part, the historic buildings flank the sides of The Horseshoe – Trost’s preeminent landscape feature – which coincides with Trost’s original building plans. The district reflects not only the university’s earliest architectural traditions, but also the school’s transition from traditional to modernist styling. In addition to buildings and the cultural landscape, there are also a number of commemorative objects including alumni donated gifts, which are considered National Register eligible.

Figure 48: Academic Historic District boundaries
The Horseshoe (Unnumbered feature)

<table>
<thead>
<tr>
<th>Architect</th>
<th>Henry C. Trost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1907</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Named for configuration of the U-shaped feature</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Grass with statuary</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>History & Landscape Design (A and C)</td>
</tr>
</tbody>
</table>

Description: The Horseshoe is a U-shaped area, oriented on an east-west axis approximately twelve acres in size. It is bounded by Espina Street on the west, which runs perpendicular to the U, and North and South Horseshoe Streets which curve toward one another and connect on the east end of The Horseshoe. Hadley Hall, the university administration building, is centered in the eastern curved section of the U. Starting from the southwest corner of The Horseshoe and moving in a counterclockwise motion, several building facades further define the boundary of The Horseshoe: Jett, Goddard, Foster, Young, Dove, and Gardiner Halls, and the Chemistry and Music buildings. Between Young Hall and Dove Hall, on the eastern terminus of The Horseshoe, two stone fountains built in 1908 and 1937 flank a brick bulletin board built by the class of 1931.
Major Alterations: The Horseshoe has undergone several modifications both in design and landscaping during its 100-year history. In the 1950s, the new Hadley Hall was constructed within the U at its eastern a cross road was built in front of the building thus truncating the bottom of the U. The original curve was then cut-off and made into a pedestrian mall as other new buildings were added in the area. Also in the 1950s, the construction of Jett Hall eliminated the south shoulder that faced Goddard Hall. The north shoulder was later paved for parking.

In addition to these design changes, The Horseshoe has undergone numerous modifications to its landscape design. A historic photograph from 1919 shows crops being grown within the U. By 1926, a driveway and footpath split the center axis of The Horseshoe, which was still planted with agricultural crops (Figure 53). Soon thereafter, elaborate entry gates were constructed at The Horseshoe’s intersection with Espina Street (Figure 54), and the footpath to old Hadley Hall became enclosed with dense vegetation forming what was called “Lover’s Lane” (Figure 55). By the mid-1950s, the heavy vegetation had been removed and The Horseshoe was again open space, albeit with grass and a few, scattered trees. Tree planting has continued on The Horseshoe to the present day.

Figure 50: Historic views of The Horseshoe
Photos courtesy of the Rio Grande Historical Collections, New Mexico State University

Figure 51: Entry gates, circa 1930s
Photo courtesy of the Rio Grande Historical Collections, New Mexico State University
Historical Significance: Despite these changes, The Horseshoe remains the most recognizable landscape feature on the NMSU campus. It retains its open space and continues to anchor the academic center of the campus, as originally envisioned by Henry Trost in 1907. Its high degree of integrity and historical significance make it eligible for the National Register.

Character Defining Features:
- Shape, central area with horseshoe shaped road defining it
- Open space on interior
- East-west axiality

Recommendations: The Horseshoe should remain an open space, aligned with buildings. Landscape elements and sculpture could be added, including paths, but such elements should not imply a division of the space. For example a row of new trees parallel to Espina Street should not be added that would divide the space into two parts. The major planting feature should continue to be the lawn. Since the very early days, there has been a flag pole placed on the axis; that feature should remain.
Building 35: YMCA Building

<table>
<thead>
<tr>
<th>Current Name</th>
<th>Conroy Honors Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect</td>
<td>Henry C. Trost</td>
</tr>
<tr>
<td>Building Number</td>
<td>35</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1907</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Originally commissioned by YMCA; William B. Conroy was 19th President of NMSU and strong supporter of honors program</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Brick, stucco, red tile roof</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Listed on National Register for its Architectural Style (C)</td>
</tr>
</tbody>
</table>

Figure 53: William B. Conroy Honors Center

Architectural Description: The William B. Conroy Honors Center, the former YMCA Building, is a Henry C. Trost-designed Renaissance Revival building constructed of stuccoed masonry on a raised basement. The west-facing façade is centered on a one-and-a-half story projecting arched entryway with a concrete spandrel panel and a glass tympanum above the pair of fully glazed entry doors. The arched entryway is raised on a concrete landing, which is flanked by pairs of single-hung windows at the basement level and by pairs of single-hung windows with glazed arches at the second story. Third story windows are six single-hung windows at the center of each elevation, flanked at each side by recessed panels. Three stuccoed horizontal bands define the three stories, framing the window courses on each story. Six ovoid, “ocular” windows, centered over the six third floor windows, define the attic level. The building is surmounted by a red-tile, hipped roof with a low pitch and two raised brick chimneys at the ends of the roofline.

Major Alterations: An elevator and stair tower was added to the rear of the building in 2003 to provide accessibility. At that time, the building was rehabilitation was completed in consultation with the State Historic Preservation Office.
Historic Significance: The YMCA Building was listed on the National Register in 1988 under: New Mexico Campus Buildings Built 1906-1938. It was considered significant as one of the original campus buildings on The Horseshoe and an excellent example of the Spanish Renaissance Revival vocabulary adopted in 1906 by the Board of Regents.

Character Defining Features:
- Three story massing
- Tripartite façade
- Decorative belt coursing and recessed panels
- Hipped red clay tile roof with brick chimneys
- Fenestration pattern, including rectangular, oval and arched openings
- Raised concrete landing

Recommendations: Very specific recommendations regarding the history and use of this building are included in the 1999 Historic Structure Report completed for NMSU by VCHP and BPLW Architects and Engineers.
Building 389: Gymnasium

<table>
<thead>
<tr>
<th>Current Name</th>
<th>Music Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect</td>
<td>Henry C. Trost</td>
</tr>
<tr>
<td>Building Number</td>
<td>389</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1911</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Named for its use.</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Brick, stucco and clay tile roof</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Contributes to district for its History & Architecture (A and C)</td>
</tr>
</tbody>
</table>

Figure 54: Music Center, historic building south elevation

Architectural description: The Music Building is a two-story stuccoed brick Renaissance Revival building with a hipped, gently sloping red clay tile roof. Its south-facing façade has a two-story projecting entry porch with a pitched-roof overhang supported by three ornamented wooden corbels. A concrete landing in its south façade with west- and east- facing stairs leads to a second-story porch entryway with a pitched-roof overhang of red clay tiles supported by three ornamented wooden corbels in the front and exposed rafter ends at the sides. In the center of this porch is an arched, fully glazed entryway. The metal door is itself fully glazed, and is flanked by two full-height single sidelites and surmounted by a two-lite arch; the two halves of the arch are divided from each other by a slender mullion. A second arch below the landing provides another access point at the first story. This entryway has a single fully glazed metal door with two single sidelights, the metal door is curved to fit into the apex of the arched opening.

Flanking the porch at either side at the second story are three tall arched windows, each infilled with five fixed lights; at the spring-level of the arches is a horizontal stucco band that wraps
around the building. Flanking these window-courses at either end of the south elevation are rectangular, raised stucco panels. Along the bottom edge of the second-story windows is another stucco cornice molding or sill-course that wraps around the building, and under this sill-course are irregularly spaced stucco dentils. The first story includes three smaller fixed-light windows flanking the porch.

Four second-story blind windows at the west elevation, are framed by raised, stuccoed surrounds which are infilled with plaster panels, while the four windows at the first story of the west elevation are fixed, single-light square windows. The east elevation has been mostly eclipsed from view by the large Music Center addition to the east. The older Trost building is now pierced by a two-story glass connector at the east elevation by a skyway between the Music Center addition and the original 1911 building.

At all four elevations, the distinct “banding” created by the horizontal sill-course and the spring-level stucco band help to emphasize the Renaissance-Revival style of the building.

Major alterations:
Construction of the Music Center (1982) dwarfed the original 1911 building and blocked it from view on The Horseshoe. The original rectangular windows for each story have been blended into a two story arched window with fixed reflective glass with a rectangular basement window below. On the west elevation the two story arch is infilled with stucco (Figure 55). Metal handrails have been added to the outside staircase at the west elevation.

Historic Significance: The Gymnasium was designed by Henry C. Trost as a component of the original Horseshoe campus plan and an example of the Spanish Renaissance Revival style. Despite later modifications that physically connected it to the Music Center, the Gymnasium building still retains a high level of architectural integrity, and continues anchor northwest corner of the original Horseshoe. It is thus considered a contributing building to the historic district (Figure 56).
Character Defining Features:
- Three story massing
- Hipped red clay tile roof with overhang and brackets
- Raised entry with stair, arched opening, gabled red tile roof and large brackets
- Stuccoed walls with fenestration pattern
- Raised stucco belt-course and decorative banding
- Stuccoed panels flanking arched window openings
- Remnants of raised running track
- Exposed roof truss

Recommendations: In future projects, the architectural design should work to restore the architecture of this early Horseshoe, Henry C. Trost Renaissance Revival building (Figure 57). On the interior the raised wood running track/spectator gallery and exposed framing should be preserved.

Figure 57: Gymnasium Building circa 1911
Source: Photo courtesy of the Rio Grande Historical Collections, New Mexico State University
Building 10: Goddard Hall

<table>
<thead>
<tr>
<th>Architect</th>
<th>O.H. Thorman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>10</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1913</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Ralph W. Goddard, Dean of School of Engineering</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Brick, stucco and wood windows</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Listed on National Register for its Architecture (C)</td>
</tr>
</tbody>
</table>

Architectural Description: Goddard Hall (original footprint: 1913), which houses the College of Engineering, is a three story Renaissance Revival building with a concrete foundation, stuccoed brick walls and a red tile hipped roof, with exposed rafter ends supporting a deep overhang (Figure 58). The west façade of the building features a central six story entry tower with a raised concrete stair and landing. At the ground level, this stair walls have an arched tunnel which admits access to a ground-story entrance of paired six light, wood doors. The second-level entrance at the top of the landing is an archway with paired, six-light wood doors, surmounted by a glazed arch stenciled with the words “COLLEGE OF ENGINEERING.” Capping the raised stuccoed concrete arch surround is a concrete balconet with supporting dentils; the balconet supports the bases of two vertical 1/1 windows. Two more windows of equal height above a spandrel pierce the fourth story of the bell-tower; surmounting these windows is a sill course topped by single semi-circular blind windows in each elevation of the
fifth story. The bell tower is crowned by a parapet-walk and cupola structure with a semi-hexagonal, hemispheric reddish metal “dome.” The four elevations at this sixth “story” behind the parapet have small single semi-circular blind windows echoing those at the fifth story.

Flanking the bell tower and entryway are the north and south extensions of the three story main portion of Goddard Hall. Each wing of the west elevation of Goddard Hall has four bays of windows. The basement windows, and foundation of the window bay, are flush with the wall, while the remaining stories of the vertical window bays are inset into the wall and rise to an arch. 1/1 double hung windows are aligned one above the other from the ground floor to the third story, and each vertical “bay” of windows is inset into the wall, with spandrels separating each third-story window from the one below it. The second story windows are separated from the ground story windows by a sill course that wraps around the building. From the top of the third-story windows spring glazed arches. A stuccoed concrete band encircles the building at the spring level of the third story window arches.

The south elevation of the building has no fenestration, while the north elevation carries on the Renaissance Revival fenestration pattern of the west elevation: inset window bays, ranging from west to east in a two-three-three-two pattern, with spandrels separating the second and third story windows in each bay, and the third-story windows culminating in rounded arches at their apexes. The concrete stucco banding encircling the building helps to accentuate the Italian Renaissance Revival feeling of the building.

The newer 1937 east wing of the building is a single-story building of stuccoed masonry walls with a concrete foundation (Figure 59). A masonry parapet wall is cut at regular intervals by three decorative red clay tile pent roofs, each supported by three large projecting rafter ends resting on horizontal beams. Under each of these three roof overhangs are groups of three arched 12/1 windows. An entry door offset to the west of center in this building’s north elevation includes a glazed arched entry surmounted by a blind arch, topped by a gabled parapet flanked by flat parapet walls.

Major Alterations: In 1937, using WPA funds, Goddard Hall Annex was constructed to the east. The façade facing The Horseshoe remains. It appears that in the 1950s another addition was constructed to the south which created a courtyard with the original buildings in the Goddard complex. In the 1960s, the west grand entry to Goddard was removed; however, in 2001, this entrance was reconstructed. It appears that at this time another addition was link to the original Goddard Hall and constructed in the area that would have been the north side of the 1950s courtyard.
Historic Significance: Goddard Hall was listed on the National Register in 1988 under: New Mexico Campus Buildings Built 1906-1938. It was considered significant as one of the original campus buildings on The Horseshoe, a component of the Trost campus plan, and as an example of Spanish Renaissance Revival style.

Character Defining Features:
- Three story massing with bell tower
- Ornate architectural detailing on tower
- Tripartite arrangement of façade
- Arched window bays with spandrel panels
- Stuccoed walls
- Hipped clay tile roof with overhang and decorative brackets
- Bas-relief spandrels
- Raised concrete entrance and steps
- Glass filled arches and entry
- Goddard Hall Annex: arched wood windows with glazing panels and formal entry elements

Recommendations: This building is in good overall condition and there are no specific repair recommendations.
Building 36: President’s House

<table>
<thead>
<tr>
<th>Current Name</th>
<th>Nason House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect</td>
<td>O.H. Thorman</td>
</tr>
<tr>
<td>Building Number</td>
<td>36</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1918</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Originally the President's Residence; renamed in 1987 for graduate student Willoughby Nason</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Brick</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Listed on National Register for its Architecture (C)</td>
</tr>
</tbody>
</table>

Architectural Description: This is a two-story stretcher-bond brick Prairie-style building on a concrete foundation. The house is entered via a wooden flush door with half-high 4/1 double-hung sidelights in a projecting one-story bay at the east elevation. This doorway and sidelight combination is off-center in the face of the projection; to the north of the doorway is a single 8/2 window protected by a wrought iron grille, completing the fenestration in the east elevation of the one-story projecting entry bay. In the south-facing elevation of the entry block are two windows protected by grilles, each 8/2 double hung windows. Immediately above the one-story entry projection, which is surmounted by a shallow hipped roof, in the east elevation of the main two-story central block of the building is a pair of approximately square 8/2 double-hung windows.

The west elevation of the central block, like the east and south elevations, has a large one-story bay that steps westward in plan from the central block. At the west elevation of this projecting bay are three arched window-openings identical in size and shape, all infilled with plaster either partly or wholly, and all painted white, in the following sequence: the southernmost of the window openings contains an 8 over 2 double-hung rectilinear window set within a white plaster or concrete infill; the window does not occupy the entire space of the window but is surrounded on the sides, top, and bottom by the plaster within the larger arched window space. This window is also protected by an external metal grille. The middle window of this group also contains an inset 8 over 2 double-hung window of the same size as the southernmost window; this one does not have a protective grille. The northernmost of these three arched windows is completely infilled with plaster or concrete.
On the north end of this western projection is another blind arch window identical in size and shape to the three on the west elevation. Above this western projection, in the west elevation of the main block that is set back from the projection, are two large 8/2 double-hung windows set symmetrically in the elevation.

The north elevation of the building has an 8/2 rectilinear double-hung window at its westernmost end; above this window the building steps back in elevation to form an inset corner platform at the top of the first story, entered through a wood door in the west face of a second-story north sleeping porch. Facing this inset platform on the north elevation of the inset is an 8/2 double-hung window.

Below the sleeping porch at the first story are three arched window openings much like those on the west elevation of the westward projection; in this case, however, the window openings are all filled with 8/2 double-hung rectilinear windows; the only portion of the opening that is infilled in this case is the blind arch above each window. At the second story, the sleeping porch has a symmetrical row of four pairs of vertical single-pane windows, each pair of lites separated by a slender wood mullion, and each pair of windows separated from its neighbors by a molded concrete mullion.

At the northeast corner of the building is a one–story rectangular entryway with rectilinear openings to the east (a window opening without infill or glazing) and the north (a walk-up doorway without a door). Adjacent to the north-facing entry opening is a metal plaque indicating that the President’s Residence was rededicated with a new name, Nason House, for a deceased graduate student named Willoughby Nason, on October 30, 1987.

Within the recess of this open entry porch is a six-paneled wood door on the east elevation. The building is surmounted by a shallow-pitch hipped roof with large overhangs at the top of the second level; the roof eaves overhang and follow the outline of the main block and second story projections. Smaller hipped roofs cover the one-story projections at the east, south, and north elevations as well. The hipped roofs, projecting wings, bands of windows, and overhanging eaves are all strong Prairie-Style details; the arched window openings, by contrast, are an eclectic borrowing from the early Mediterranean-style and Territorial Collegiate buildings elsewhere on the NMSU campus.

Major Alterations: At the first story immediately south of the entryway projection is a recently added U-shaped accessibility ramp leading to an east-facing double door in a projection jutting southward from the main block of the building. On the east elevation of the southward projection, adjacent to the double doors, is a single large picture window; both the picture window and the double doors have projecting brick surrounds.

On the south elevation of this projection at the first story are three large roughly square picture windows, with brick surrounds and sills. At the west elevation of this projection is a single fire-escape stairway leading to the roof of the southward projection. At the first story immediately under the fire escape is an 8/2 double-hung window. Surmounting the southward projection is a large HVAC unit. In the building’s central block in the south elevation’s second story above the single-story south projection, fenestration consists of a 4-light band of vertical windows separated by slender vertical Mullions, flanked by two 8/2 double-hung windows.
Historic Significance: The President’s House was listed on the National Register in 1988 under: New Mexico Campus Buildings Built 1906-1938. It is recognized for its architectural contribution as the only Prairie style building on campus, and one of only two buildings still retaining its brick facade.

Character Defining Features:
- Two story, Prairie style massing
- Flat roof with wide overhangs
- Brick walls and fenestration pattern
- Arched window openings, wooden-sash windows, ribbon windows

Recommendations: Features on the interior should be preserved if possible. These include the original wood floors, door moldings, baseboards, and crown molding; built-in china cabinet with leaded glass doors; fireplace mantle and compound blind hearth over hearth; built-in storage window seat in front room; and original, unornamented banisters.
Building 32: Young Hall

<table>
<thead>
<tr>
<th>Architect</th>
<th>Henry C. Trost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>32</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1928</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Named for Regent R.L. Young</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Brick</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Contributes to district for its History and Architecture (A and C)</td>
</tr>
</tbody>
</table>

Architectural Description: Young Hall, the former campus library and current ROTC building, is a symmetrical, two-story brick west-facing Italian Renaissance-style building on a concrete foundation, surmounted by a hipped, red clay-tiled roof with an overhang supported by wooden corbels. In the center of the façade is a one story, hip-roofed entry porch, with an arched, multi-light window in the west elevation, and single glazed, flush entry doors on the side elevations, each surmounted by transom lights. The arched opening in the west elevation of the entryway was formerly the main entry door for the building; it is slightly raised from the ground and was reached by a two-step concrete stair. The doorway has been replaced by a steel, fixed, eight-light window. This window is surmounted by a fixed, multi-light arch (need to check this to see how many lights are in arch). The archway and its legs are bordered by multiple, variegated courses of bricks protruding slightly from the plane of the elevation.

Flanking the former entryway are two torch-like sconces crowned with frosted globes. These in turn are flanked by single round, blind windows, which are each bordered by two slightly protruding courses of bricks.

Between the hipped roof of the entryway and the top of the arch is an overhang supported by wooden corbels, echoing the elements of the building’s main roof. Above the roofline of the entryway is centered a single, fixed-light window with a molded concrete sill. Surmounting this window are black dimensional letters spelling out “YOUNG HALL.”
Flanking the entryway on both stories are two clusters of windows: a pair of 1/1 fixed light windows, and a group of five 1/1 fixed-light windows. All of these windows have molded concrete sills. Roughly equidistant between the heads of the second-story windows and the bases of the corbels runs a concrete belt-course, which wraps around the building.

At the east elevation of the building is a large two-and-a-half story, flat-roofed, brick addition with concrete coping dating to 1982. Set beneath an overhang supported by a beveled brick pier is a two-story, multi-light glass entryway set at an oblique angle to the plane of the east elevation.

Major alterations: 1982 alterations include a two-story glass entry with a beveled pier at the east elevation, replacement of the original windows with fixed lights, and reconfiguration of the original main entry (Figure 63). The original doors were replaced with fixed multi-light windows, and leaf doors with a glazed window and a transom light above were installed in the north and south walls of the entry portal. The additions in the rear of the building are not visible from the façade.

![Figure 63: Young Hall northeast corner](image)

Historic Significance:
Young Hall, the university’s first library building, was designed by Henry Trost in the Spanish Renaissance Revival style and is purposefully located on The Horseshoe. It is also one of only two buildings that still has its original brick façade.

Character Defining Features:
- Two story massing
- Hipped red clay tile roof
- Cornice brackets
- Fenestration pattern
- Arched entry on west with hipped roof
- Exposed brick

Recommendations: While this building has lost integrity through the large addition on the east, the alteration to the entry and the replacement of windows, it still holds a prominent position on The Horseshoe and maintains the overall design, scale and massing that support the history of The Horseshoe. As such the Henry Trost Renaissance Revival features and scale should be maintained. If there are any future additions, they should be executed on the east end of the building.
At some point a sign was located on the west elevation at the entry door. To install the sign the brick was cut (apparently this was easier than moving the sign six inches to the south). After sign was removed the broken bricks were repointed with a Portland cement mortar. NMSU should monitor this area for signs of continued deterioration. At a minimum, the university should repoint with a mortar to match the historic. If the brick has continual deterioration, new matching brick should be installed.

Figure 64: Cut brick and poor repointing
Building 33: Kent Hall

Architect Percy McGhee
Building Number 33
Date of Construction 1929

Name Origin Harry L. Kent, university president (1921-36)
Primary Materials Stuccoed masonry walls, wood brackets and clay tile roof
National Register Criteria Individually Eligible for its History and Architecture (A and C)

Architectural Description: Kent Hall is a two-story Mission Revival building with stuccoed masonry walls resting on a concrete foundation. The building, which houses the university museum, is composed of three two-story wings in a U-configuration on the east, west, and north elevations, plus a seven-arched, single-story arcade at the south elevation; the three wings and the arcade on the south combine to form a square central courtyard. Surmounting the wings and arcade is a roofline with clay-tile roofs both gabled and hipped, with wooden corbels supporting the overhangs.

The building’s north façade features a projecting two-story entrance with a front-gabled red-tile roof that steps down to a lower hipped roof. The pair of five-panel wood entry doors at the center of the entrance is framed by a molded surround, which is surmounted by a geometric ceramic tile-panel of Moorish design. Above this tile-panel is a vertically aligned, raised plaster panel with a symmetrical fish scale-patterned inset. Surmounting all is a raised plaster quatrefoil set in the gable-end.

Flanking the entry doors at the first level are single fixed-light windows with blind arches, above which are single fixed-light vertical windows at the second level, flanking the fish scale insert. At the corners of the projecting entrance are stucco quoins, and flanking the entrance are also single fixed-light, rectangular replacement windows set in the original arched window opening, with stucco filling in the area around the replacement.

Flanking the projecting entrance are extensions of the north wing running on an east-west axis, with five roughly symmetrical single-light fixed windows on both stories and on either side of the entrance projection. The second story windows are accentuated by a sill-course, which wraps
around the building. From the ends of this north wing, the east and west wings extend southward, each containing nine fixed light windows on each story, with roughly every third window containing a recessed bay pierced with a slit-window aperture; these courses of windows are identical in both stories, and the second story windows are underscored by the sill-course. The western elevation of the west wing is bisected by an exterior brick chimney, which rises several feet above the roofline.

Completing the square courtyard plan of the whole, from the southern ends of the east and west wings and projecting inward toward the courtyard are a pair of gable-ends, which are connected to each other via the seven-arched single-story arcade. Each arch of this arcade has a wrought-iron insert.

The “inner” elevations of the north, east, and west wings are punctuated with regular fenestration patterns at the first and second stories facing inward onto the courtyard. On the ground story of these elevations are large single-light fixed windows, separated into bays by molded plaster “colonnades” with simple “capitals” parallel with the tops of these windows. The fenestration at the second story is likewise uniform on all three inward-facing wing elevations, with fixed single-light windows, smaller and greater in number than the first story windows, and all underscored by molded concrete sills. The south end of the courtyard is bounded by the inner, north-facing elevation of the seven-arched arcade.

On the south elevation of the north wing of the building, facing the interior of the courtyard, is another entrance projection rising two stories, roughly identical in shape to the entrance projection on the north façade, and in fact continuing its north-south roofline. Paired metal glazed doors with a tiled spandrel panel above are framed with a concrete, molded surround. Surmounting the tile spandrel panel is a single, fixed-light vertical window. In the gable end above this window is a simple, recessed plaster-mold foil-like design. Flanking the entry molding at the first level are single, fixed light, arched windows. Echoing this motif, two more single fixed-light arched windows flank the entrance projection at the first story of the south elevation of the north wing.

Rising above all is an asymmetrically placed octagonal bell-tower with a predominantly yellow mosaic dome in the California Mission style, which surmounts the roofline of the north wing. The tower’s south wall extends to the ground level within the courtyard and is flush with the south elevation of the north wing; the tower also abuts the south entrance projection on its east side.

Major Alterations: Iron gates added to arcade. Balcony on interior courtyard filled in with windows. Windows replaced with anodized aluminum, fixed tinted lights. Stucco infill in areas where windows didn’t fill the original openings.

Historic Significance: Kent Hall is the quintessential campus building using Trost’s Spanish Renaissance Revival vocabulary, but designed by his protégée Percy McGhee. Its enclosed courtyard and many intricate architectural details make the building an excellent example of this design style.
Character Defining Features:
- Two story massing with enclosed courtyard
- Arcade
- Gabled, red clay tile roof with overhang and decorative brackets
- Decorative tile panels
- Plaster cinquefoil
- Terra cotta door surrounds
- Stuccoed walls with quoins at corners
- Recessed front entrance covered by gabled roof
- Cupola with scrolls at each corner
- Tiled dome (yellow with blue chevrons)

Interior:
- Foyer: original crown molding, beveled to ceiling and includes picture molding
- Original square doorways recessed inside arched openings,
- Arched windows recessed inside square openings,
- Original entry doors, molding, and hardware with vestibule,
- Three stepped arch openings, above front entrance, two on either side of entrance that open to small rooms,
- Stone/brick/plaster chimney piece, with original composite mantle with scrolled edges, original wood floor.
- Chimney piece features a Native American swastika emblem, which was the NMSU emblem until the Nazi party made it their internationally known symbol. The swastika at Kent Hall is hidden under a wooden plaque with the new NMSU emblem of three triangles. The former director of the University Museum in Kent Hall (Ed Staski) covered the swastika to avoid offending visitors.

Recommendations: This building is in good overall condition and there are no specific recommendations.
Building 34: Foster Hall

Architect: Percy McGhee
Building Number: 34
Date of Construction: 1930
Name Origin: Luther Foster, university president (1901-08)
Primary Materials: Masonry walls, concrete decorative features and clay tile roof
National Register Criteria: Listed on National Register for its Architecture (C)

Figure 66: Foster Hall

Architectural Description: Foster Hall is a two-and-a-half story Spanish Baroque style rectilinear building with a central, recessed entryway (Figure 66). The building has a concrete foundation, stuccoed masonry and a hipped red tile roof with decorative wood corbels under a short overhang. The façade is horizontally divided into three using stucco relief and the corners have quoins. The first and second floor windows are rectilinear 2/2 single-hung anodized aluminum. The second floor windows have no surrounds and are slightly recessed from the wall plane, while the first floor windows have a concrete, bullnose sill and an ornate, molded Spanish Baroque head.

The central entrance is reached by an asymmetrical concrete stair with flanking rough stone walls that lead to a symmetrical concrete stair flanked by stepped stuccoed walls surmounted by concrete caps and concrete scrolls. The entryway is recessed with paired wood doors that have a single panel below and a six true-divided light vision panel above. The paired doors are separated by a transom bar from the arched fanlight above. The fanlight is divided into two parts: the inner part is a half-circle segmented into six lights by a rectilinear grid, and the outer part consists of seven lights radiating in a fan-pattern.

The interior of this recessed porch is adorned by several murals painted in 1936 by WPA artist Olive Rush (Figure 67). The mural depicts a young boy on the east wall holding a bag of Acala cotton from the Agronomy Department of New Mexico State College, because Acala cotton was a major experimental crop during this period. The sack also features the number 1517, which was Dr. Stroman of MCA&MA's new breed of Acala cotton, which was much celebrated and
considered a superior cotton crop. Featured on the west wall is the 1936 dairy champion as well as children holding wormy fruit, which emphasized the Agricultural Department's important role in pest control experiments. The ceiling depicts flora and fauna. A large black circle painted around the ceiling represents a microscope lens, in which are depicted algae, cells, and other microorganisms. Outside the scope of the lens are depicted various types of flora and fauna at a macroscopic level, symbolic of the college's role in animal husbandry and agriculture ("Olive Rush Retouches Foster Murals," *Round-up*, April 15, 1951).

Figure 67: Olive Rush Murals at Foster Hall entrance

The two story entrance surround is elaborately decorated concrete flanked by quoin pilasters that have asymmetrically scrolled capitols. The entrance is arched with an ornate leaf motif flanked by pilasters with the same motif that rise to a bearded mascaron. The arch and pilaster are surmounted by a stepping, scrolled and ornate architrave that flanks a lion mascaron. This architrave is surmounted by a window with a 9-pane metal grille with a scrolled segmental arch head (Figure 68). This window unit is flanked by ornate tapered pilasters that rise to a stepped and ascending, banded architrave with abutting scrolls at the center. The whole is flanked by finials.

Figure 68: Churriguesque entry details

Major Alterations: Two large additions extend south from the original building (Figure 69). The first addition shows on the east and is a massive structure with little fenestration. The second
addition was completed in 2007 and returns to the Trost idiom with stuccoed walls, a tiled roof, cornice brackets, and quoin. Both are much larger in scale than the original building.

Figure 69: Additions to Foster Hall

Historical Significance: Foster Hall was listed in National Register in 1988 under the multiple property nomination: New Mexico Campus Buildings Built 1906-1938. The building is significant for its architectural styling as the only example of Spanish Baroque architecture on campus, thus elaborating on the university’s recognized Spanish Renaissance Revival style. It has significant architectural detailing in its vestibule. It is also important for its location on The Horseshoe.

Character Defining Features:
- Two story massing
- Ornate central Spanish Baroque, recessed entrance
- Clay tile hipped roof with small overhang and decorative eave brackets
- Masonry stucco walls with quoin at corners
- Fenestration pattern
- Decorative window lintels
- 1936 murals by Olive Rush
- Tiled wall and floor at base of murals

Recommendations:

The concrete walk at the entrance was raised to accommodate the accessibility retrofit for Foster Hall. This resulted in a “trench” at the base of the decorative entry (Figure 70). Although there is an area to the side of the concrete trench that is lower and allows water to drain in that direction, this area becomes a place for ponding water and should be monitored over the years to ensure that damage is not occurring to the most detailed and ornate historic entrance on campus.

Figure 70: Concrete “trench”
The decorative entryway is multi-toned (Figure 71). It is unclear if this is original, but there is a coating on the "concrete" colored areas as well. This coating is crazing and flaking. An architectural conservator should be hired to analyze this Churriguesque entrance and provide recommendations for repair and maintenance.

Figure 71: Decorative detail

While the main fields of the Olive Rush murals in the vestibule appear to be in overall good condition (they were rehabilitated in 2007-08 by Luis Neri Zegal of the National New Deal Preservation Association), the adjacent accent walls are spalling and covered with graffiti (Figure 72). This damage should be repaired.

Figure 72: Damage to vestibule accent wall

The tile walls and floors appear to be in good condition (Figure 73). They should be considered part of the historic character of the vestibule and when an architectural conservator is hired for the other important features of this building, that person should provide a conditions assessment, recommendations for repair and maintenance for these elements as well.

Figure 73: Foster vestibule tile

Recently accessibility upgrades were made to the historic Foster Hall entrance. Originally the entrance was symmetrical with three steps on east/west axis at a right angle to the door. The resulting "T" shaped concrete walk was framed with stuccoed walls that ended with a decorative volute. This formal symmetrical entrance was changed to an asymmetrical approach with stairs angled toward the west and a ramp arcing to the east. The historic stair remained in place on the east/west axis and the volutes became engaged in the new concrete ramp (Figure 74). Overall this design accomplished the goals of accessibility, but resulted in an adverse effect on the most formal and architecturally decorative entrance on The Horseshoe.
There is no recommended action at this time, however in the future if there is a desire to rework the entrance or alter the grades adjacent to the entrance, the historic entry detailing should be considered and alterations designed to restore the original symmetry for the building and the grounds.

There are several items on the interior that are of interest and should be preserved if possible. These include: 1) terrazzo tile floor at central staircase and vestibule floor; 2) staircase that splits into two at the landing between the first and second floors; and 3) original wood banisters with brass brackets.
Building 56: Dove Hall

<table>
<thead>
<tr>
<th>Architect</th>
<th>Percy McGhee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor</td>
<td>R.E. McKee (El Paso)</td>
</tr>
<tr>
<td>Building Number</td>
<td>56</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1936</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Claude C. Dove, Professor of Education & Psychology</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Brick walls, stucco and clay tile roof</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Individually Eligible for its History and Architecture (A and C)</td>
</tr>
</tbody>
</table>

Architectural Description:
Dove Hall is a rectilinear stuccoed brick building constructed in the Renaissance Revival style (Figure 75). The stuccoed base steps forward from the main wall which is flush for two stories and then banded from the window head to the bottom of wood corbels at the overhang of the hipped red tile roof. The entrance is centered on the west elevation with paired recessed steel doors with an upper vision panel. The doors are framed by a segmental arch flanked by classical pilasters above which are metal dimensional letters “DOVE HALL” and an architrave. This entryway is surmounted by a fixed single-pane window (with a metal grille on the interior), flanked by classical pilasters topped with an architrave. A wrought-iron balconet encloses the window and pilasters.

The fenestration flanking the entry consists of a series of flush anodized aluminum windows, arranged on both floors in a paired-single-paired pattern, each with single fixed panes with faux mullions and muntins on the interior. The first floor windows rest on the stuccoed base and the second floor have a concrete sill.
Other entrances (south and east) have simplified versions of the front entrance with the paired wood doors, segmental or jack arches surmounted by a central fixed window. Above this is a trio of fixed anodized aluminum windows with concrete sills. The fenestration pattern on the east elevation is asymmetrical, but as with the west elevation the first floor windows rest on the stuccoed base and the second floor windows have concrete sills. There is a stuccoed, molded chimney on the east elevation.

Major alterations: An entry ramp on the south side and a basement entry was added on the north side. Original wood double hung windows were replaced with anodized aluminum fixed units with faux lites on interior.

Historical Significance: This building is significant for its contribution to the university’s Spanish Renaissance Revival architectural vocabulary, and its association with the WPA-funded campus construction and its location on The Horseshoe.

Character Defining Features:
- Two story massing
- Hipped clay-tile roof with overhang and decorative brackets
- Stuccoed walls
- Fenestration pattern
- Two story segmental arched entry
- Masonry built-in benches with scroll volutes
- Wrought-iron balconets

Interior:
- Staircase, which splits in two at the second floor landing
- Banisters spiral at the newel post
- Original molding along staircase
- Original crown molding, chair rail, and door molding in entry hallway

Recommendations: When new windows are desired for this building in the future, the window that is installed should be wood and match the historic configuration.
Building 172: Hadley Hall

Architect: Robert Merrell
Contractor: C. H. Leavell and Co. (El Paso)
Building Number: 172
Date of Construction: 1953

Name Origin: Hiram Hadley, university president (1888-94)
Primary Materials: Stuccoed masonry
National Register Criteria: Contributes to district for its History and Architecture (A and C)

Architectural Description: Situated within the “top,” or east end, of The Horseshoe, Hadley Hall’s west façade looks down the length of this important and historic campus landscape feature; the ends of Hadley Hall’s north and south wings extend nearly to the eastern termini of North Horseshoe and South Horseshoe Drive, respectively (Figure 76). This predominantly Mission Revival style building has a concrete foundation, stucco walls and gabled red tile roofs. It is dominated at the center by an elevated, two-story, front-gabled central entrance with a low-pitch red clay-tile roof. The brick stairs and landing lead to paired, fully glazed metal entry doors which are recessed within an arched porch. This archway is ovoid, and features saw-tooth marble surrounds gently sloping to a rectangular marble keystone at its apex. Surmounting the arch are three sets of paired aluminum windows in a horizontal band, and above this band of windows is a single louvered vent centered in the gable-end.

Flanking the arch in the entrance are single, tall and narrow 2/2 single-hung windows. The entrance steps down in plan to ledges flanking the entrance that are parallel with the top of the first story. On each side of the entrance, the ledge is surmounted by two ornamental concrete urns.

Extending north and south from the two-story entrance are two-story wings, each with eleven aluminum 2/2 double-hung windows on the first story and 4/4 double-hung windows on the second story of the west elevation. Both story windows have concrete sills, the second story is surmounted by a stucco band and the first story windows are set in a stucco reveal that extends from grade to a foot above the window header. At the north and south elevations at the ends of these wings are single glazed entry doors with sidelights, accessed via raised concrete landings, with molded concrete door surrounds and segmented architraves.
The east elevation of Hadley Hall echoes the west elevation in many particulars, including the continuation to this elevation of the central large entryway along the same east-west roofline to a gable-end echoing that of the west elevation. The east gable-end elevation has a fenestration pattern identical at both stories to that of the west facade. The saw-toothed archway motif and recessed porch leading to inset, off-center paired metal glazed doors is also repeated on this elevation, with the important difference that this entry, due to a west-to-east slope in topography, is not reached via a raised concrete landing but is accessed via a concrete promenade at grade. At the east elevation, as at the west elevation, the roofline of the entrance again steps down to a ledge at the top of the first story, which is surmounted on each side by paired concrete urns. The fenestration at the east elevation of the north and south wings echoes that of the west elevation of these wings.

Major Alterations: None

Historic Significance: This building contributes to the Spanish Renaissance Revival architectural vocabulary found in this historic district.

Character Defining Features:
- Massing: three story central bay with flanking two story wings
- Gabled, red clay-tile roofs (north/south orientation on wings and east/west on center)
- Stuccoed walls and fenestration pattern (horizontal emphasis)
- 2/2 and 4/4 windows
- Oval saw-tooth arched entry with marble surrounds
- Marble-covered grand staircase
- Urns on west elevation
- Sconces at side entries
- Decorative door surrounds at side entrances

Recommendations: Maintain and preservation the marble wainscots, original ceiling fixtures, exposed beam ceiling and murals in the foyer (Figure 77). The murals on the south wall were painted in 1959 by NMSU art professor Kenneth Barrick. They depict New Mexico historical themes, including the Spanish Colonial and Early American periods. The murals on the north wall represent twentieth century motifs (a dam and rockets) were painted by an unknown artist at about the same time as Barrick’s.
Figure 77: Hadley Hall murals. Note beam ceiling, light fixtures and marble walls
Building 179: O'Loughlin House

<table>
<thead>
<tr>
<th>Architect</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>179</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1953</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Margaret O'Loughlin, former head of Home Economics Department</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Stuccoed concrete masonry unit</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Contributes to district for its History and Architecture (A and C)</td>
</tr>
</tbody>
</table>

Figure 78: O'Loughlin House

Architectural description: This is a single-story, roughly T-shaped cross-gabled Ranch-style house of stuccoed concrete block on a concrete foundation, with its north façade fronting on University Avenue. The north façade features an integral porch supported by wood square columns with Zapata corbelled capitals. Within the porch is a metal half-glazed door and an aluminum single-hung 2/2 window adjacent to the door and nearly the same height and width as the door, with a brick sill nearly at the porch’s floor-level; the other window, is situated toward the west end of the porch, is roughly half the size of the first window, and is a paired 4 light, steel casement with a brick sill. East of the porch, still on the north elevation, is a gable-end with two sets of windows, one a single small 2/2 aluminum window, and the other a triple set of larger 2/2 aluminum windows. All windows on the building have brick sills.

The gable-ends on the east and west elevations include louvered attic vents under the eaves. The south elevation features a raised concrete landing near its western end, leading to two separate single entry doors with six-light glazed wooden doors accessed via wooden outer screen doors. This elevation also features a large single fixed window flanked by vertical four-light steel casements on either side, each surmounted by a single fixed light. This window is underscored by a brick sill. The fenestration on the gable end at this south elevation is similar but not identical to that on the gable end at the north elevation; as at the north elevation, there is a single smaller 2/2 double hung window, but instead of a triple set of large 2/2 aluminum windows there is a double-set of large 2/2 aluminum windows.
The whole structure is surmounted by an asbestos shingle roof with an overhang and covered rafter ends.

At the apex of the east and west gable ends are louvered attic vents. At the west gable end is a pair of off-center 2/2 double hung windows separated by a wood mullion. At the east gable end are two single 2/2 double hung windows positioned symmetrically in the elevation.

Major Alterations: None

Historic Significance: The O'Loughlin House was built as a model home for the Home Economics Department, in order to teach students how to manage a "modern" home. It uses the architectural vocabulary of a simplified Ranch House with regional vernacular detailing.

Character Defining Features:
- One story massing
- Intersecting gable roof
- Engaged porch with zapata corbel posts
- Tongue-in-groove wooden soffit and porch ceiling
- Stuccoed walls with fenestration pattern
- Steel-sash windows
- Quarter-round cornice molding

Interior:
- Original wood floors
- Built-in shelving in hallway made from steel pipe and wood planks in a geometric design
- Double closets with double sets of two leaf sliding doors in bedrooms
- Original crown molding, coved ceilings, and baseboards
- Original doors with some original hardware
- Two linen closets with original shelving (one small, one large and U-shaped)
- Galley kitchen with original cabinets
- One large bathroom with original bathtub, cabinets, light fixtures, and wall vents, one with original floors but redone for ADA compliance

Recommendations: This building is in good overall condition and there are no specific recommendations.
Building 187: Chemistry Building

Architect: Wolgamood and Millington
Contractor: R.E. McKee (El Paso)
Building Number: 187
Date of Construction: 1957

Name Origin: use
Primary Materials: CMU, stucco and aluminum windows
National Register Criteria: Individually Eligible for its History and Architecture (A and C)

Architectural Description: The 1957 Chemistry Building is a two-story Modern Renaissance Revival style building, rectilinear in plan with a 5 bay south façade (Figure 79). The central bay serves as the entrance and is flanked by two bays that step back in plan. The building has a concrete foundation, stuccoed CMU walls and a flat roof with parapets that are capped with low-sloped, red tiles.

The dominant feature of the entrance bay is a recessed curtain wall with 5 rows of glazing framed by notched concrete pilaster strips topped with a concrete lintel. A concrete stair, the same width as the curtain wall, leads to the entrance and is flanked by low stuccoed walls with concrete caps. Within, and at either end, of the curtain wall there are two steel doors with full vision panels. The first row of glazing is the same height as the doors, the central 3 rows are square and the top row is similar in height to the first, but includes a hopper window at the base. The top two rows of the square units are painted with a 1962 mural by Ken Barrick, depicting “the bonding process taking place between two energy spots.” Centered in the stuccoed area between the curtain wall lintel and the cornice molding are metal dimensional letters spelling out “CHEMISTRY & BIOCHEMISTRY.”
The bays that flank this curtain wall entrance step back in plan. Each bay contains aluminum paired 4 horizontal pane over a single hopper windows with a larger mullion between the pairs and a concrete sill. The windows have no surround, but are set within two story stucco inset that rises from grade to the head of the second story window. The roofline of this bay begins below the cornice molding of the entrance bay. Flanking this bay and also stepping back in plan are bays at the same roof height and with two of the two-story window elements (with inset, aluminum hoppers, etc) as the bay that flanks the entrance bay.

Wings (built in 1968 and 1997) at the rear of the building are linked via a one-story connector and greatly increase the footprint of the original 1957 building. The 1968 wing is three stories constructed of concrete with banded stucco, a flat roof, and three corrugated concrete pointed towers with red tile shed roofs along the east elevation. The windows are tall and narrow with projecting, prefabricated concrete surrounds. The 1997 addition is designed in a Regional Modernist design, with red tile roof, stuccoed CMU walls, arches in an interior courtyard and an octagonal cupola with a red tile roof.

Major Alterations: There were two additions to the Chemistry Building completed in 1968 and 1997 (Figure 80). These were added at the north of the building and greatly increased the footprint. Although massive, these additions are distinctive from the historic building, are not visible from The Horseshoe and do not detract from the architectural integrity. The Chemistry Building was added onto again in 1997 and this renovation returned to the earlier Trost idiom.

Historic Significance: Like the Astronomy Building, this building is an example of the architectural transition from Trost’s Spanish Renaissance Revival style Regional Modernism where modernist style was combined Trost’s basic design features. The building is representative of the modern architectural styling envisioned by NMSU President Roger B. Corbett to bring the university into the “modern age.”

Character Defining Features:
- Two story massing with stuccoed walls that step back in plan
- Rectangular glass curtain wall at entrance with aluminum mullions
Recommendations:

It appears that there were bars built into the walls at the window openings. These have since been removed but the ends left uncovered and the minor stucco damage around them left in disrepair. There does not appear to be continuing damage; when the next stucco repair project is designed, it should include repair of the window heads.

Figure 81: Damage at window head

The concrete pilasters flanking the entrance are beginning to show minor cracking which could eventually lead to spalling. The cracks should be monitored and an architectural conservator should be involved in developing the specifications for repair and/or completing the repair.

Figure 82: Cracking pilaster

This exposed “vent” is located on the south elevation, west wing of the building. If this was intended to act as a vent, the concrete should be removed to restore airflow. In either case, a new cover should be installed so the rough carpentry and opening is not visible or subject weathering.

Figure 83: Exposed rough carpentry

There are some interior details that are original and should be maintained. These include original doors and hardware and original banisters on staircases.
Building 188: Gardiner Hall

Architect: Wolgamood and Millington
Contractor: R.E. McKee (El Paso)
Building Number: 188
Date of Construction: 1957
Name Origin: Dr. George W. Gardiner, former head of the Department of Physics and founder of Physical Science Laboratory in 1946.
Primary Materials: CMU, stucco and aluminum windows
National Register Criteria: Individually Eligible for its History and Architecture (A and C)

Southeast corner

Figure 84: Gardiner Hall

Architectural Description: Gardiner Hall is a two-story, rectilinear Regional Modernist building with a 5 bay south façade (Figure 84). The building has a concrete foundation, stuccoed CMU walls and a flat roof with parapets that have a cornice molding and are capped with low-sloped, red tiles.

The dominant feature of the entrance bay is a recessed curtain wall with 9 rows of square glazing framed a by notched concrete pilaster strips topped with a concrete lintel. The middle row of the curtain wall uses metal inserts instead of glazing. Centered on the curtain wall are paired steel doors with full vision panels.

The bays that flank this curtain wall entrance step back in plan. These bays have pilaster strips and concrete lintel that frame two aluminum 4 horizontal pane over a single aluminum hopper windows with stucco wall between them with a concrete sill running between the pilasters. Flanking this bay and also stepping back in plan are bays with four of the aluminum hopper windows flush with the wall and with concrete sills. The east and west elevations include 3-pane, paired horizontal hoppers with concrete sills. There is a small third-story penthouse with a similarly low-pitched red tile roof at the northwest corner of the building.
Major Alterations: In 1968, the Graduate Physics Building wing was constructed at the rear of Gardiner Hall. The addition is a three-story rectangular building oriented on a north-south axis. It includes pre-cast concrete walls covered with stucco, a flat roof, and vertical columns of paired, narrow windows (Figure 85). This addition is connected to the main building by a small, stuccoed secondary entranceway. There is a large galvanized steel HVAC room on the roof of the addition that is visible from The Horseshoe.

Historic Significance: Like the Astronomy and Chemistry buildings, this building is an example of the architectural transition from Trost’s Spanish Renaissance Revival style Regional Modernism where modernist style was combined Trost’s basic design features. The building is representative of the modern architectural styling envisioned by NMSU President Roger B. Corbett to bring the university into the “modern age.”

Character Defining Features:
- Two story massing
- Stuccoed walls that step back in plan
- Rectangular glass curtain wall and mural at entrance
- Flat roof with red-tile parapet coping
- Plaster cornice molding
- Symmetrical fenestration pattern and metal-hopper windows with concrete sills

Recommendations: There are no specific conditions issues for this building. However there are some minor details on the interior that should be preserved if possible: original metal banisters on central staircase, and the building’s original doors and hardware.
National Register Eligible Objects Contributing to District

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Fish Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Placement</td>
<td>1908</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Upper classmen used to dunk freshmen (fish) in water.</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Concrete and lava rock.</td>
</tr>
<tr>
<td>Area of Interest</td>
<td>Alumni donated object.</td>
</tr>
</tbody>
</table>

This landscape feature is in its original location and should be maintained in place. Inspect lava rocks for deterioration and repair in kind.

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Fountain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Placement</td>
<td>1937</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Named for use.</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Concrete and lava rock.</td>
</tr>
<tr>
<td>Area of Interest</td>
<td>Alumni donated object.</td>
</tr>
</tbody>
</table>

The fountain is in its original location and should be maintained in place. Inspect lava rocks for deterioration and repair in kind.

<table>
<thead>
<tr>
<th>Object Name</th>
<th>McFie Cornerstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Placement</td>
<td>1897</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Building remnant</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Limestone</td>
</tr>
<tr>
<td>Area of Interest</td>
<td>Remnant of first academic building on campus</td>
</tr>
</tbody>
</table>

The McFie Cornerstone should be preserved in place as it marks the location of the first academic building on campus. It has incised lettering that should be monitored to ensure these inscriptions are maintained and preserved. An architectural conservator should be consulted to provide preservation recommendations.
<table>
<thead>
<tr>
<th>Object Name</th>
<th>Greek Bulletin Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Placement</td>
<td>1931</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Named for its use.</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Concrete and stucco.</td>
</tr>
<tr>
<td>Area of Interest</td>
<td>Alumni donated object.</td>
</tr>
</tbody>
</table>

The Bulletin Board should remain in place, as it is in its original location. Its pilasters, clay tile, wood framed opening and plaque should be maintained.
This chapter describes those properties that are considered individually eligible for the national register. They include traditional cultural properties and individual buildings that are not located in historic districts.
Buildings

Buildings 79, 80 and 185: Rhodes Hall, Garrett Hall, and Hamiel Hall

<table>
<thead>
<tr>
<th>Architect</th>
<th>R.E. Merrell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>79, 80, 185</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1941–1955</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Eugene Manlove Rhodes (western writer); Elizabeth Garrett (wrote “Oh Fair New Mexico”); Flora Hamiel (secretary to seven NMSU Presidents)</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>Masonry, stucco</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Individually eligible for their History and Architecture (A and C)</td>
</tr>
</tbody>
</table>

Figure 86: Rhodes Hall, Garrett Hall, and Hamiel Hall

Architectural Significance:
These three two-story Renaissance Revival dormitories form a U-shaped plan, opening westward (Figure 131). Built separately from 1941-55 but planned from the beginning as a single joined unit, the buildings are situated thus: the center is Garrett Hall; Rhodes Hall is the north wing and Hamiel Hall the south. All feature stuccoed masonry walls resting on a raised concrete foundation with a partial basement in Hamiel Hall. All have entrances centered on their wing that serve as the architectural focal point that faces onto the interior green.

Garrett Hall, the north-south axial “bottom” of the U features a projecting two-story front-gabled entryway in its west façade with an arched entrance at its center; it is reached by a set of concrete stairs rising from the ground level. Within the recessed porch formed by this archway is an off-center, metal, fully glazed door with a single-paned sidelite and two single-paned transom lites, one over the sidelite and one over the door.

Framing the recessed entryway is an arch with a dog-tooth circular architrave featuring a prominent keystone at its apex; above the keystone are dimensional letters spelling out “Garrett.” Flanking the entry recess and supporting the architrave are two thick molded plaster pilasters, each topped with a small setback featuring a molded plaster escutcheon just beneath the spring-line of the arch. Abutting the arch itself just above these escutcheons are large metal sconces with curved, frosted panes.

Surmounting the archway and the dimensional letters is a bank of three arched windows with multi-light casements, with the façade bordering the windows slightly projecting from the plane of the elevation and underscored by a molded concrete sill with hanging dentils. Over the bank of windows is a decorative tile pent roof supported by seven pairs of carved wood brackets.
There is a louvered quatrefoil vent between the top edge of the pent-roof and the eaves of the entryway, which, like the pent-roof, is supported by pairs of carved wood brackets.

Rising along the south side of Garrett Hall’s entryway and offsetting the symmetry of the south elevation of the entryway’s gable-end stands a four-story high square tower, with a small six-light casement in the west elevation of the third story and a molded cornice overhang between the third and fourth stories. Surmounting this cornice is a square fourth-story cupola with pairs of off-center arched openings in each elevation, topped by a hipped red clay-tile roof. The cupola is surrounded by a wrought-iron balcony rising from support brackets that project outward from under the molded cornice overhang; the balcony encloses the fourth story observation catwalk and terminates in long, needle-like finials that rise past the roofline of the cupola.

Rhodes and Hamiel, the two east-west-running axes of the complex, each have projecting two-story front-gabled entryways surmounted by a gently pitched red-clay tile roof with eaves supported by pairs of carved wooden brackets. Each of these entryways is reached by concrete stairs, and features a centered arched porch with a recessed entry consisting of fully glazed metal doors, sidelights, and multi-pane transom lights. Sconces flank the archways, and surmounting the archways is a bank of three arched, multi-light, metal single-hung windows under a decorative tile pent roof supported by wood brackets echoing those under the eaves. Centered over the pent roofs and sunken into the gable ends under the entryway eaves are single louvered quatrefoil attic vents. In many of these details the Rhodes and Hamiel entryways echo that of Garrett, the most prominent exception being that there is no observation tower at these facades.

In all three of the attached dormitory buildings the wings flanking the two-story entryways have multi-light, metal casement windows in all elevations, and flat roofs with hipped coping protected by composition roll roofing. Plaster molding bands the building under the cornice.

Major Alterations: A large ramp has been added to Garrett Hall’s facade to meet ADA requirements.

Historic Significance: Rhodes, Garrett Hall and Hamiel Halls are associated with the continuation of the Spanish Renaissance Revival style of architecture at the university and with the expansion of the campus on its east side during the mid-twentieth century.

Character Defining Features:

1. **All:** Two story massing with taller central entrance; masonry walls with stucco; red tile parapet coping; steel casement windows.
2. **Rhodes:** Arched entrance w/ rope decorations around interior and exterior of arch; cross gabled entrance roof; small terra cotta pent roof over entrance with decorative brackets.
3. **Garrett:** Stepped arch with balconets over side windows; square tower offset to right of main entrance with metal balcony with decorative S-shaped metal brackets underneath, red tile flat roof, and two arched openings.
4. **Hamiel:** plain arch surmounted by three arched windows and pent roof.
Recommendations:

The red tile parapet coping has been removed from the building and replaced with modified bitumen roofing. The tile parapet coping should be restored when the building is re-roofed.

Figure 87: Parapet without red tile coping

The interiors of the dormitory retain some historic features and these should be preserved if possible. They include original chimneys, exposed wood beam ceilings, built-in bookcases with leaded glass doors, wrought iron chandeliers, statuary niches, molded panels between windows, double wood staircase with wrought iron railing, original baseboards (under vinyl), original doors and hardware, built-in half-arc shelving and original bathroom cabinetry in dorm rooms.
Building 154: Garcia Annex

Architect: Unknown
Contractor: C.H. Leavell Construction
Building Number: 154
Date of Construction: 1949

Name Origin: Fabian Garcia, NMSU horticulturist
Primary Materials: Stuccoed masonry wall, terra cotta tile roof
National Register Criteria: Individually eligible for its History and Architecture (A and C)

Architectural Description:
Garcia Annex is a two-story, symmetrical, Modern Regionalist E-shaped building of stuccoed masonry walls; the “legs” of the E extend east (Figure 133). Centered on the west elevation is a protruding entryway with a front gabled, red clay-tile roof. The doorway is arched with a modern version of the Spanish Baroque archway, which projects slightly from the wall plane. Flanking the door are fluted pilasters surmounted by a variation of ionic plaster capitals and an architrave. Rosettes are set within the spandrels. Topping the architrave is a plaque that tapers inward at the sides from bottom to top. In the center of this plaque and flanked by plaster dolphins are the words “FABIAN GARCIA MEMORIAL HALL” in raised plaster letters. At the four corners of this plaque are small plaster-relief urns. Centered above the plaster plaque in the gable end of the entryway is a large, recessed quatrefoil window with leaded lights (Figure 89).

Figure 88: Garcia Annex
Figure 89: Entrance to Garcia Hall Annex
Flanking either side of the plaster archway are simple, decorative plaster quoins rising from the ground to the level of the architrave. Flanking the quoins and set back slightly within the plane of the entryway façade are two-story stacked vertical ribbons of 30-light casement windows separated into groups of 15 by a metal transom bar. Flanking the central entryway are long, L-shaped wings with hipped red-clay tile roofs. At the west elevation these north and south wings are each symmetrically glazed with sixteen large, horizontally oriented 24-light casement windows, eight windows to a story.

The north and south elevations, corresponding to the “top” and “bottom” of the “E,” each have twelve multi-pane casement windows (six to a story) like those at the west elevations of the wings. Fenestration along the “leg”-ends and the “inner” elevations of the “E” carry on a similar pattern of more or less symmetrical casement window groups at each story. The central front-gabled entryway of the west elevation carries its roofline to the east side of the building to form the central “leg” of the “E”; the gable-end at the east elevation differs from the west façade in that instead of an entry door there is an external stuccoed masonry chimney centered in the gable-end, with multiple chimney pots protruding above the roofline from the top of the single chimney column. The external chimney is flanked by vertical, two-story metal 33-light casement windows, with each set of windows divided into vertically stacked segments by two metal transom bars each into three groups of 12, 9, and 12 lights.

Major Alterations: None

Historic Significance: This building represents a transition from a classical Spanish Renaissance Revival style based on the idiom developed by Henry C. Trost to one with a newer, more modern architectural vocabulary developed following World War II. Funding for the construction of this building came from the estate of long-time professor Fabian Garcia whose wish it was to build a dormitory for poor boys and boys with Spanish surnames.

Character Defining Features:
- One story massing with higher central portion
- Stuccoed walls with symmetrical window placement
- Red clay tile roof
- Eave brackets
- Arched entrance with surrounds, pilasters and cinquefoils topped by concrete plaque with scrollwork: "Fabian Garcia Memorial Hall,"
- Fluted window reveals on E/W center projection

Interior:
- Two-story lobby with wooden stair railing and balustrade on the second-story landing, exposed wood beam ceiling with decorative brackets at sides, and square rafters with supporting corbels.
- Dining Hall fireplace with fluted chimney, carved stone surrounds and coping for mantle, some original doors/hardware, stone stepped arch surrounds entrance door.

Recommendations: Architecturally, this building is in overall good condition with no specific recommendations; however, when McFie Circle is developed, the lawn and viewshed leading to Garcia Hall Annex should be preserved.
Building 82: Air Mechanics Laboratory

<table>
<thead>
<tr>
<th>Architect</th>
<th>Robert Merrell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor</td>
<td>unknown</td>
</tr>
<tr>
<td>Building Number</td>
<td>82</td>
</tr>
<tr>
<td>Date of Construction</td>
<td>1941</td>
</tr>
<tr>
<td>Name Origin</td>
<td>Designed for aeronautics department during World War II</td>
</tr>
<tr>
<td>Primary Materials</td>
<td>CMU, stucco and steel windows</td>
</tr>
<tr>
<td>National Register Criteria</td>
<td>Individually Eligible for its History and Architecture (A and C)</td>
</tr>
</tbody>
</table>

Northeast Corner

Stepped Parapet and Concrete Sign over North Entrance

Figure 90: Air Mechanics Laboratory

Architectural Description: This single-story utilitarian building consists of two adjoining rectangular blocks, oriented on an east-west axis. Both sections are similar in square footage and materials but the roofline of the south block rises approximately four feet higher than the north. This south block was originally designed as a hangar and mechanical shop for aircraft. A flat roof with rounded concrete coping and crown molding, masonry stucco walls on a raised concrete foundation, and metal awning windows contribute to the utilitarian feel of the building. The shorter block consists of the main building façade and entrance, which faces north. Stylistic details are evident on this elevation only.

Concrete steps with concrete-capped railing walls lead to a centrally located portal. The middle bay of the portal contains an arched entry with a metal-frame fully glazed door, flanked by a full sidelight on the east side, and crowned by a multi-glaze transom in the tympanum. Above the arch, an inscribed sandstone plaque identifies the building as “N.M.A-MA AIR MECHANICS BUILDING 1941.” This is topped by a crenellated parapet with plaster molding. Two flanking bays are separated from the entrance bay by concrete pilasters topped with decorative concrete urns. These bays feature glass block lights with concrete sills and metal plaques below. A bay containing a bank of six 6/3 steel awning windows with a continuous concrete sill extend from each side of a central portal. Two bays, each with pairs of 6/3 steel awning windows, fill both ends of the facade.

Major Alterations: Originally the interior of this building was open to serve as an aircraft maintenance hangar; however the interior has been converted to offices. Greenhouses have been attached to the south side and are not visible from the main façade.
Historic Significance: This building is significant for its association with WPA-funded campus construction and its support of aeronautical research at the university during World War II.

Character Defining Features:
- Two block, one story massing
- North entrance with paired door, flanked by pilasters (topped with concrete decorative urns), glass block windows and WPA plaques
- Arched transom window
- Sandstone plaque identifying the building
- Flat roof with stepped parapet at north entrance
- Cornice molding at parapets
- Concrete plaques with New Mexico Zia symbol between "WPA" above and "1941" below

Recommendations:
Remove or greatly prune trees at entrance. They not only detract from the historic architectural character of this building, as the entrance is the most interesting feature, but they attract pigeons. There are droppings on the sidewalk and around the entrance; not only is this unattractive, it is also a health hazard. Such conditions can cause a blood disease called *histoplasmosis*. The droppings should be treated as hazardous waste and removed prior to treating the trees.

Figure 91: Overgrowth of trees at entrance

Some of the original steel windows on the building are rusting badly. The rust should be removed the surface properly prepared and repainted. If the rust has caused structural damage, the window element (or window as a whole) should be replaced with a unit to match the historic.

Figure 92: Rusted steel window muntin
Building 225: Astronomy Building

Architect: Wolgamood and Millington
Contractor: R.E. McKee
Building Number: 225
Date of Construction: 1959
Name Origin:
Use: Use
Primary Materials: CMU, stucco and aluminum windows
National Register Criteria: Individually eligible for its History and Architecture (A and C)

Architectural Description: The Astronomy Building is a rectangular two-story building designed in the Modern Renaissance Revival style. A north facing façade shows four bays on each side of a projecting central portal. The building features CMU walls covered with stucco, a flat roof with terra-cotta tile coping along a parapet, and plaster cornice molding. The portal is framed with plaster molding and features a set of double metal-frame glazed entry doors surrounded by multiple fixed-glass sidelights, and a four-light fixed transom. A metal four-panel spandrel separates the transom from a sixteen light curtain wall above. Flanking the portal, each bay features 3/1 metal hopper windows with concrete sills in both stories. This pattern is repeated in the east and south elevations. In addition, two sets of double glazed entry doors with a transom light are in the south elevation. A square, flat-roofed penthouse, with tile coping rises above the northwest corner and allows access to the roof. The building has a concrete foundation and a basement.

Major Alterations: Accessibility ramp on south elevation; elevator addition (2008).

Historic Significance: The building is an example of the architectural transition from Trost's Spanish Renaissance Revival style to Regional Modernism where a modernist approach was combined Trost's basic design features. The building is representative of the modern architectural styling envisioned by NMSU President Roger B. Corbett to bring the university into the "modern age."
Character Defining Features:
- Two story massing
- Stuccoed walls that step back in plan
- Rectangular glass curtain wall at entrance with aluminum mullions
- Concrete pilasters flanking curtain wall with surmounting cornice
- Fenestration pattern
- Flat roof with red-tile parapet coping
- Plaster cornice molding
- 3/1 and 4/1 aluminum hopper windows with concrete sills

Recommendations: This building appears to be in overall good condition, thus there are no specific repair recommendations.
Architect: unknown
Contractor: unknown
Building Number: Not applicable
Date of Construction: 1924
Name Origin: Unknown
Primary Materials: Concrete and stucco
National Register Criteria: Individually eligible for its History (A)

Architectural Description: The Miller Gates are symmetrical, tripartite concrete structures that are coated with stucco centered on a large opening. The structures step down from the middle toward the exterior. Each has a rectilinear coping, recessed panels and a small base. The central portion has a circular arch.

Major Alterations: Original metal gates and fencing have been removed. Commemorative plaques installed.

Historic Significance: The Miller Field Gates mark the entrance to the university’s original athletic fields (now the site of Skeen Hall).

Character Defining Features:
- Symmetry around the large central opening
- Tripartite composition
- Recessed panels
- Circular arch
- Coping
- Stucco

Recommendations: Gates and commemorative plaques should be maintained in place.
THE NMSU ACADEMIC HISTORIC DISTRICT
& INDIVIDUAL HISTORIC BUILDINGS: CONCLUDING REMARKS

The Academic Historic District, including its buildings and objects, and the historic properties located adjacent to the district embody virtually every era of the university’s history and contain examples of the many architectural design phases found on the main campus. This area has been identified as extremely significant to the university’s architectural design and planning heritage by not only architectural historians, but by the architects and planners who developed the university’s latest Master Plan (for discussion, see Volume 2). As such, it is fitting that the university pay particular attention to this area and carefully consider not only future modifications to individual historic buildings, but to the overall character and historical integrity of the historic district when planning future campus development. In addition, care should be taken when performing routine maintenance on these buildings so that their character-defining features are not compromised (see Volume 2 for a discussion of recommended maintenance actions). By taking these precautionary steps in both planning and maintenance, the university can continue to improve the facilities that already exist while maintaining the historic qualities that make New Mexico State University a special place at which to study, teach, and conduct research.